scispace - formally typeset
Search or ask a question
Author

Sanjeev K. Pandey

Bio: Sanjeev K. Pandey is an academic researcher from Banaras Hindu University. The author has contributed to research in topics: Controlled release & Surface modification. The author has an hindex of 6, co-authored 8 publications receiving 215 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer.

85 citations

Journal ArticleDOI
TL;DR: Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGA-Tmx as compared to pure Tmx in terms of receptor mediated endocytosis and reveal a novel vehicle for the treatment of cancer.

46 citations

Journal ArticleDOI
TL;DR: Tmx-NPs showed the marked reduction in hepatotoxicity and renal toxicity when compared to pure Tmx as evidenced by histopathological examination of liver and kidney tissues as well as estimation of AST, ALT levels, and creatinine, urea, blood urea nitrogen levels.

44 citations

Journal ArticleDOI
05 Dec 2016-Polymer
TL;DR: In this article, surface modification of graphene oxide has been performed using diamine moieties with varying chain length and subsequently chemically grafted with long chain polyurethane for wrapping up of graphene sheet with large polymer chains Functionalization of graphene and its subsequent grafting have been verified through spectroscopic measurements like NMR, FTIR and UV-visible spectroscopy.

35 citations

Book ChapterDOI
01 Jan 2013
TL;DR: This article will support research scientists and clinical physicians who are interested in the development and application of biodegradable polymeric nanoparticles as potential delivery systems for therapeutics.
Abstract: Biodegradable polymers are being extensively used with great interest in areas of nanobiotechnology such as drug delivery, diagnostics, and other applications for clinical and biomedical research covering cardiovascular diseases, diabetes, osteogenesis, cancer, and tissue engineering. Various biodegradable polymers such as poly(lactic acid), poly(lactic-co-glycolic acid), poly (e-caprolactone), chitosan, gelatin, and poly(alkyl cyanoacrylates) have been extensively utilized as polymeric materials and devices for targeted cellular and tissue-specific clinical applications to achieve maximal therapeutic efficacy with minimal or no side effects. Recently, polymeric nanoparticles have revolutionized the area of nanobiotechnology by creating new opportunities for advancing medical science and disease treatment. Polymeric nanoparticles have the potential to act as a carrier of drugs and active constituents to targeted sites, protecting them from the environment and controlling their release rates, thereby enhancing their biological activity and decreasing the adverse side effects. This article compiles updated information regarding various biodegradable polymers, methods of preparation of biodegradable polymeric nanoparticles, and their application in therapeutic and diagnostic strategies for various diseases. This article will support research scientists and clinical physicians who are interested in the development and application of biodegradable polymeric nanoparticles as potential delivery systems for therapeutics.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs are discussed and recent scientific advances in the area of chemotherapy are described.
Abstract: Although conventional chemotherapy has been successful to some extent, the main drawbacks of chemotherapy are its poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, development of multiple drug resistance, and non-specific targeting. The main aim in the development of drug delivery vehicles is to successfully address these delivery-related problems and carry drugs to the desired sites of therapeutic action while reducing adverse side effects. In this review, we will discuss the different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs and will describe recent scientific advances in the area of chemotherapy, emphasizing challenges in cancer treatments.

1,229 citations

Journal ArticleDOI
TL;DR: PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities.

637 citations

Journal ArticleDOI
TL;DR: This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which thepolymers are generated, and the end-of-use options.
Abstract: The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in c...

574 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercET were discussed, including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation.
Abstract: Background Quercetin, one of the most well-known flavonoids, has been included in human diet for a long history. The use of quercetin has been widely associated with a great number of health benefits, including antioxidant, anti-inflammatory, antiviral and anticancer as well as the function to ease some cardiovascular diseases (i.e., heart disease, hypertension, and high blood cholesterol). However, poor water solubility, chemical instability and low bioavailability of quercetin greatly limit its applications. Utilization of delivery systems can improve its stability, efficacy and bioavailability. Scope and approach In this review, biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercetin were discussed. Key findings and conclusions Quercetin digested in human body (e.g., mouth, small intestine, liver, kidneys) undergoes glucuronidation, sulfation or methylation. During the food processing and storage, many factors such as heat, pH, metal ions, could affect the chemical stability (including oxidation and degradation) of quercetin. Utilization of delivery systems including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation has the potential to improve both the stability and bioavailability and thus health benefits of quercetin. Each delivery system has its unique advantages and shortcomings, and the specific selection should be based on the application domains. Moreover, the exploration of natural food-grade ingredients as main compositions of delivery systems for quercetin might be required in the future.

460 citations

01 Oct 2012
TL;DR: The aim of this review is to highlight mechanistic, mathematical models for drug release from PLGA microspheres that specifically address interactions between phenomena generally attributed to autocatalytic hydrolysis and mass transfer limitation effects.
Abstract: PLGA microspheres are widely studied for controlled release drug delivery applications, and many models have been proposed to describe PLGA degradation and erosion and drug release from the bulk polymer. Autocatalysis is known to have a complex role in the dynamics of PLGA erosion and drug transport and can lead to size-dependent heterogeneities in otherwise uniformly bulk-eroding polymer microspheres. The aim of this review is to highlight mechanistic, mathematical models for drug release from PLGA microspheres that specifically address interactions between phenomena generally attributed to autocatalytic hydrolysis and mass transfer limitation effects. Predictions of drug release profiles by mechanistic models are useful for understanding mechanisms and designing drug release particles.

239 citations