scispace - formally typeset
Search or ask a question
Author

Sanjeev Setia

Bio: Sanjeev Setia is an academic researcher from George Mason University. The author has contributed to research in topics: Wireless sensor network & Key distribution in wireless sensor networks. The author has an hindex of 33, co-authored 66 publications receiving 5600 citations. Previous affiliations of Sanjeev Setia include University of Maryland, College Park.


Papers
More filters
Proceedings Article
31 Oct 2003
TL;DR: The 2004 ACM Workshop on the Security of Ad Hoc and Sensor Networks (SASN) as discussed by the authors was held in association with the 11th ACM Computer and Communications Security Conference, October 25, 2004, in Washington, DC.
Abstract: These proceedings contain the papers selected for presentation at the 2004 ACM Workshop on the Security of Ad Hoc and Sensor Networks (SASN) held in association with the 11th ACM Computer and Communications Security Conference, October 25, 2004, in Washington, DC. We received a total of 35 paper submissions, of which 7 were selected as full papers, and 6 as short papers for presentation at the workshop. Each paper was reviewed by at least two members of the program committee (most papers received three reviews), and was evaluated on the basis of its importance, novelty, technical quality, and relevance to the workshop theme. The program committee discussions were conducted electronically. In addition to the selected papers, the workshop program includes an invited keynote talk by Jack Stankovic (University of Virginia), and a panel discussion. The relatively short time frame for the review process resulted in a large workload for the program committee. We thank all the program committee members for their hard work and insight in reviewing submissions. Committee members sometimes solicited the advice of colleagues; we are grateful to those colleagues, in particular: Lujo Bauer, Nauel Ben Salem, Srdjan Capkun, Mario Cagalj, Roberto Di Pietro, Kris Gaj, Jihye Kim, Yong Lee, Donggang Liu, Jun Luo, Allesandro Mei, Jonathan McCune, Panagiotis Papadimitratos, Maxim Raya, Nitesh Saxena, Bob Simon, Gurmeet Singh, Stefan Schmit, Runting Shi, and Jeong Y.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations

Journal ArticleDOI
TL;DR: The fast progress of research on energy efficiency, networking, data management and security in wireless sensor networks, and the need to compare with the solutions adopted in the standards motivates the need for a survey on this field.

1,708 citations

Proceedings ArticleDOI
27 Oct 2003
TL;DR: The Localized Encryption and Authentication Protocol (LEAP) as discussed by the authors is a key management protocol for sensor networks that is designed to support in-network processing, while at the same time restricting the security impact of a node compromise to the immediate network neighborhood of the compromised node.
Abstract: In this paper, we describe LEAP (Localized Encryption and Authentication Protocol), a key management protocol for sensor networks that is designed to support in-network processing, while at the same time restricting the security impact of a node compromise to the immediate network neighborhood of the compromised node. The design of the protocol is motivated by the observation that different types of messages exchanged between sensor nodes have different security requirements, and that a single keying mechanism is not suitable for meeting these different security requirements. LEAP supports the establishment of four types of keys for each sensor node -- an individual key shared with the base station, a pairwise key shared with another sensor node, a cluster key shared with multiple neighboring nodes, and a group key that is shared by all the nodes in the network. The protocol used for establishing and updating these keys is communication- and energy-efficient, and minimizes the involvement of the base station. LEAP also includes an efficient protocol for inter-node traffic authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing and passive participation. We analyze the performance and the security of our scheme under various attack models and show our schemes are very efficient in defending against many attacks.

1,097 citations

Journal ArticleDOI
TL;DR: This paper compares security issues between IoT and traditional network, and discusses opening security issues of IoT, and analyzes the cross-layer heterogeneous integration issues and security issues in detail and discusses the security issues as a whole.
Abstract: Internet of Things (IoT) is playing a more and more important role after its showing up, it covers from traditional equipment to general household objects such as WSNs and RFID. With the great potential of IoT, there come all kinds of challenges. This paper focuses on the security problems among all other challenges. As IoT is built on the basis of the Internet, security problems of the Internet will also show up in IoT. And as IoT contains three layers: perception layer, transportation layer and application layer, this paper will analyze the security problems of each layer separately and try to find new problems and solutions. This paper also analyzes the cross-layer heterogeneous integration issues and security issues in detail and discusses the security issues of IoT as a whole and tries to find solutions to them. In the end, this paper compares security issues between IoT and traditional network, and discusses opening security issues of IoT.

1,060 citations