scispace - formally typeset
Search or ask a question
Author

Sanjeevikumar Padmanaban

Bio: Sanjeevikumar Padmanaban is an academic researcher from Aarhus University. The author has contributed to research in topics: Photovoltaic system & Boost converter. The author has an hindex of 34, co-authored 367 publications receiving 5244 citations. Previous affiliations of Sanjeevikumar Padmanaban include Sathyabama University & National Institute of Technology, Puducherry.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller.
Abstract: This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller.

24 citations

Journal ArticleDOI
TL;DR: In this article, the authors exploited the utilization of photovoltaic (PV) energy system with highvoltage (HV) output DC-DC converter to maximize the PV power generation.
Abstract: This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power generation. The proposed power circuitry substantially improves the output power gain transfer ratio and a prototype hardware module is implemented using industrial standard DSP TMS 320F2812. Numerical simulation development followed by an experimental prototype implementation is carried out in this investigation. A set of numerical and experimental results is provided in this paper, which show close conformity with...

24 citations

Journal ArticleDOI
TL;DR: In this paper, an algorithm making use of hybrid features of Hilbert transform (HT) and Stockwell transform (ST) to identify the single-stage and multiple-stage power quality disturbances (PQDs) is introduced.
Abstract: An algorithm making use of hybrid features of Hilbert transform (HT) and Stockwell transform (ST) to identify the single-stage and multiple (multi-stage) power quality disturbances (PQDs) is introduced in this manuscript. A power quality index (PI) and time location index (TLI), based on the features computed from the voltage signal by the use of HT and ST are proposed for recognition of the PQDs. Four features extracted from the PI and TLI are considered for classification of the PQDs achieved using decision tree driven by rules. The algorithm is tested on the PQDs generated with the help of mathematical models (in conformity with standard IEEE-1159). Performance is evaluated on 100 data set of every disturbance computed by varying various parameters, and efficiency is found to be greater than 99%. It is established that an algorithm is effective for recognition of PQ events with an efficiency greater than 98% even in the presence of high-level noise. Algorithm is faster compared to many reported techniques and scalable for application to voltages of all range. Results are validated through comparison with the results of the algorithms reported in the literature. Performance of the algorithm is effectively validated on the practical utility network. This algorithm can be effectively implemented for designing the power quality (PQ) monitoring devices for the utility grids.

24 citations

Journal ArticleDOI
TL;DR: A comprehensive review of research published for solving the short-term hydrothermal scheduling problem in the last four decades is presented in this paper, where a number of research articles have been published addressing STHTS using different techniques.
Abstract: Short term hydrothermal scheduling (STHTS) is a non-linear, multi-modal and very complex constrained optimization problem which has been solved using several conventional and modern metaheuristic optimization algorithms A number of research articles have been published addressing STHTS using different techniques This article presents a comprehensive review of research published for solving the STHTS problem in the last four decades

24 citations

Journal ArticleDOI
TL;DR: The study was carried out to identify a reference current extraction technique that yields the best performance and understand the implementation of the same to identify inherent issues that can sometimes be overlooked because of their simplicity and ease of implementation.
Abstract: This study deals with the mitigation of current harmonics, which is primarily important to alleviate power quality problems in modern times. Current harmonics produced by different widely used loads have been evaluated and related parameters have been tabled. Using the data obtained, a non-linear load was modelled to serve as the test load. Different mitigation solutions and techniques were studied to select an appropriate filter design for domestic single-phase application. The Active Power Filter (APF)’s steady-state and dynamic output was evaluated with reference current extraction techniques like PQ and SRF theories in Simulink. For a fair comparison, various parameters related to the filter design were kept identical between the tests conducted; and to test the dynamic performance, a highly inductive load was connected halfway through simulation. The reactive power compensation offered by the filter was studied by using various waveforms and parameters are investigated and tabulated. The study was carried out to identify a reference current extraction technique that yields the best performance and understand the implementation of the same to identify inherent issues that can sometimes be overlooked because of their simplicity and ease of implementation. The performance of two commonly used reference current extraction techniques were analyzed by subjecting it to highly non-linear and highly inductive loads that were modelled based on various loads that were analyzed.

24 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: This Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication, to understand bacterial versatility in mechanisms used for current generation.
Abstract: The use of microbial fuel cells to generate electrical current is increasingly being seen as a viable source of renewable energy production In this Progress article, Bruce Logan highlights recent advances in our understanding of the mechanisms used by exoelectrogenic bacteria to generate electrical current and the important factors to consider in microbial fuel cell design There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities Enriched anodic biofilms have generated power densities as high as 69 W per m2 (projected anode area), and therefore are approaching theoretical limits To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication

2,045 citations

01 Jan 2016

1,633 citations