scispace - formally typeset
Search or ask a question
Author

Sanjeevikumar Padmanaban

Bio: Sanjeevikumar Padmanaban is an academic researcher from Aarhus University. The author has contributed to research in topics: Photovoltaic system & Boost converter. The author has an hindex of 34, co-authored 367 publications receiving 5244 citations. Previous affiliations of Sanjeevikumar Padmanaban include Sathyabama University & National Institute of Technology, Puducherry.


Papers
More filters
Proceedings ArticleDOI
01 Oct 2017
TL;DR: The modified high gain Single Ended Primary Inductance Converter (SEPIC) for renewable energy applications is presented and the simulation results validate the feasibility of projected converter.
Abstract: The proposed work present the modified high gain Single Ended Primary Inductance Converter (SEPIC) for renewable energy applications. The voltage gain of proposed converter is very highly related to conventional dc-to-dc converter and recently projected converter based on conventional converter. The key feature of projected converter is only one controlled device and voltage gain is increased without using a transformer and coupled inductor structure. The voltage gain of projected converter is increased by 10 times compared to the SEPIC converter by adding one extra inductor and capacitor in SEPIC converter for a duty ratio of 90%. The detailed analysis of the voltage gain with the voltage drop across passive device and working of projected converter is deliberated in details in the paper. The projected converter is simulated in Matrix Laboratory software (2014). The simulation results validate the feasibility of projected converter.

11 citations

Journal ArticleDOI
TL;DR: Simulation and experimental results have been provided to show the performance of the proposed topology with selective harmonic elimination and fundamental switching frequency PWM techniques, which have been discussed for the better output voltage waveform.
Abstract: A new single-phase asymmetrical multilevel inverter (MLI) is presented in this study. The proposed topology generates a staircase output voltage waveform with a maximum number of levels using less number of components compared to several existing and recent topologies. The basic module consists of a combination of two isolated DC sources with ten switches that produce all the possible number of levels. Other advantages of the proposed MLI include improved output voltage performance and a low blocking voltage of the switches. The low switching frequency pulse width modulation (LSF-PWM) technique has been used for the generation of gate pulses. In the LSF technique, selective harmonic elimination (SHE) and fundamental switching frequency PWM techniques have been discussed for the better output voltage waveform. The optimised switching angles with SHEPWM has been calculated using particle swarm optimisation considering the different combination of the elimination of lower order harmonics. Simulation work was carried out using MATLAB/SIMULINK, and a prototype was implemented to validate the proposed MLI module. Simulation and experimental results have been provided in the study to show the performance of the proposed topology with these modulation techniques.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the improved Extended Kalman Filter (IEKF) was used to estimate rotor flux and mechanical speed of rotor from the stationary axis components in a direct sensorless vector-controlled system through simulation and experimental work.
Abstract: This work presents an investigation on Improved Extended Kalman Filter (IEKF) performance for induction motor drive without a speed sensor. The performance of a direct sensorless vector-controlled system through simulation and experimental work is tested. The proposed observer focuses on estimating rotor flux and mechanical speed of rotor from the stationary axis components. Extended Kalman Filters’ estimation performance depends on the system matrix’s proper value ( $Q$ ) and measurement error matrix ( $R$ ). These matrices are assumed to be persistent and are calculated by the trial-and-error method. But, the operating environment affects these matrix values. They must be updated based on the prevailing operating conditions to get high speed and accurate estimates. The values of Q and R in the Improved EKF (IEKF) algorithm are obtained using the genetic algorithm. Besides, IEKF is incorporated to reduce in computational burden for real-time applications.

11 citations

Journal ArticleDOI
25 Jul 2017-Energies
TL;DR: In this paper, an adaptive sliding mode Luenberger state observer with improved disturbance rejection capability and better tracking performance under dynamic conditions is presented, where the sliding hyperplane is altered by incorporating the estimated disturbance torque with the stator currents, and the effects of parameter detuning on the speed convergence are observed and compared with the conventional disturbance rejection mechanism.
Abstract: The purpose of this work is to present an adaptive sliding mode Luenberger state observer with improved disturbance rejection capability and better tracking performance under dynamic conditions. The sliding hyperplane is altered by incorporating the estimated disturbance torque with the stator currents. In addition, the effects of parameter detuning on the speed convergence are observed and compared with the conventional disturbance rejection mechanism. The entire drive system is first built in the Simulink environment. Then, the Simulink model is integrated with real-time (RT)-Lab blocksets and implemented in a relatively new real-time environment using OP4500 real-time simulator. Real-time simulation and testing platforms have succeeded offline simulation and testing tools due to their reduced development time. The real-time results validate the improvement in the proposed state observer and also correspond to the performance of the actual physical model.

11 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: This Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication, to understand bacterial versatility in mechanisms used for current generation.
Abstract: The use of microbial fuel cells to generate electrical current is increasingly being seen as a viable source of renewable energy production In this Progress article, Bruce Logan highlights recent advances in our understanding of the mechanisms used by exoelectrogenic bacteria to generate electrical current and the important factors to consider in microbial fuel cell design There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities Enriched anodic biofilms have generated power densities as high as 69 W per m2 (projected anode area), and therefore are approaching theoretical limits To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication

2,045 citations

01 Jan 2016

1,633 citations