scispace - formally typeset
Search or ask a question
Author

Sanjeevikumar Padmanaban

Bio: Sanjeevikumar Padmanaban is an academic researcher from Aarhus University. The author has contributed to research in topics: Photovoltaic system & Boost converter. The author has an hindex of 34, co-authored 367 publications receiving 5244 citations. Previous affiliations of Sanjeevikumar Padmanaban include Sathyabama University & National Institute of Technology, Puducherry.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the effect of tilt angle on the performance of a grid-integrated solar PV plant was investigated by comparing the results obtained using the PVsyst software with the practical data of annual solar insolation.
Abstract: This paper presents a study for the estimation of generation from a large-scale, grid-interfaced solar PV plant using the PVsyst software. This study aims to investigate the effect of tilt angle on the performance of the grid-integrated solar PV plant. Two types of tilt angle test plants, i.e., a fixed tilt angle of 30° (1 MW) and two seasonal tilt angles, in summer 13° and in winter 30° (2.5 MW), have been selected at the same location in Bikaner, India. The performance of the proposed test solar power plants, rated at 1 MW (fixed tilt angle) and 2.5 MW (two seasonal tilt angles), is established by comparing the results obtained using the PVsyst software with the practical data of annual solar insolation. It is established that the radiation incident on PV modules will increase by 2.41% if two seasonal tilt angles are considered. Hence, the annual capacity utilization factor (CUF) has increased by 0.26%. Furthermore, it is established that the proposed method’s performance is superior compared to the statistical methods reported in the literature.

6 citations

Journal ArticleDOI
08 Sep 2020-Energies
TL;DR: This paper presents a finite control-set model predictive control (FCS-MPC) based technique to reduce the switching loss and frequency of the on-grid PV inverter by incorporating a switching frequency term in the cost function of the model predictivecontrol (MPC).
Abstract: This paper presents a finite control-set model predictive control (FCS-MPC) based technique to reduce the switching loss and frequency of the on-grid PV inverter by incorporating a switching frequency term in the cost function of the model predictive control (MPC). In the proposed MPC, the control objectives (current and switching frequency) select an optimal switching state for the inverter by minimizing a predefined cost function. The two control objectives are combined with a weighting factor. A trade-off between the switching frequency (average) and total harmonic distortion (THD) of the current was utilized to determine the value of the weighting factor. The switching, conduction, and harmonic losses were determined at the selected value of the weighting factor for both the proposed and conventional FCS-MPC and compared. The system was simulated in MATLAB/Simulink, and a small-scale hardware prototype was built to realize the system and verify the proposal. Considering only 0.25% more current THD, the switching frequency and loss per phase were reduced by 20.62% and 19.78%, respectively. The instantaneous overall power loss was also reduced by 2% due to the addition of a switching frequency term in the cost function which ensures a satisfactory empirical result for an on-grid PV inverter.

6 citations

Journal ArticleDOI
TL;DR: The article describes design and experimental verification of a new control structure with reference model for a multi-motor drive of a continuous technological line in which the motors are mutually mechanically coupled through processed material to achieve a zero steady-state control deviation of the tension in the strip.
Abstract: The article describes design and experimental verification of a new control structure with reference model for a multi-motor drive of a continuous technological line in which the motors are mutually mechanically coupled through processed material. Its principle consists in creating an additional information by introducing a new suitable state variable into the system. This helps to achieve a zero steady-state control deviation of the tension in the strip. Afterwards, the tension controller is designed to ensure asymptotic stability of the extended system by applying the second Lyapunov method. The realized experimental measurements performed on a continuous line laboratory model confirm the advantages and correctness of the proposed control structure: it is simple, stable, robust against changes of parameters, invariant to operating disturbances and ensures a high-quality dynamics of the controlled system prescribed by the reference model. To demonstrate effectiveness of the design, the performance of the controller was compared with properties of a standard Proportional Integral Derivative/Proportional Integral (PID/PI) controller designed in frequency domain.

6 citations

Proceedings ArticleDOI
17 Mar 2019
TL;DR: In this treatise, a new Single Input Double Output L-L converter is articulated for high voltage auxiliary loads in fuel-cell vehicles and is compared with existed high voltage DC-DC converters.
Abstract: Typically, the fuel cell output voltage magnitude is low and a series connection of several fuel cells is not a practical solution to achieve high voltage for vehicular applications. Therefore, DC-DC converter with a high voltage conversion ratio and multiple output capability is necessary to feed multiple high voltage auxiliary loads. In this treatise, a new Single Input Double Output L-L converter (SIDO L-L converter) is articulated for high voltage auxiliary loads in fuel-cell vehicles. The motivation and block diagram of SIDO L-L converter is provided in detail and the switching states and their characteristic waveforms are discussed. The CCM and DCM operation is discussed and the voltage conversion ratio for CCM and DCM is analyzed. Additionally, to highlight the benefits, the proposed SIDO L-L converter is compared with existed high voltage DC-DC converters. The design and performance of the proposed converter are verified through numerical simulation and hardware implementation, the obtained results validate the theoretical analysis.

6 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: This Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication, to understand bacterial versatility in mechanisms used for current generation.
Abstract: The use of microbial fuel cells to generate electrical current is increasingly being seen as a viable source of renewable energy production In this Progress article, Bruce Logan highlights recent advances in our understanding of the mechanisms used by exoelectrogenic bacteria to generate electrical current and the important factors to consider in microbial fuel cell design There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities Enriched anodic biofilms have generated power densities as high as 69 W per m2 (projected anode area), and therefore are approaching theoretical limits To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication

2,045 citations

01 Jan 2016

1,633 citations