scispace - formally typeset
Search or ask a question
Author

Sanjit Konar

Bio: Sanjit Konar is an academic researcher from Indian Institute of Science Education and Research, Bhopal. The author has contributed to research in topics: Magnetization & Metal-organic framework. The author has an hindex of 41, co-authored 132 publications receiving 4721 citations. Previous affiliations of Sanjit Konar include Texas A&M University & Indian Association for the Cultivation of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: A site-specific sequential nucleation and growth route to the systematic building of hierarchical, complex, and oriented ZnO micro/nanostructures in solution nanosynthesis.
Abstract: Here we report a site-specific sequential nucleation and growth route to the systematic building of hierarchical, complex, and oriented ZnO micro/nanostructures in solution nanosynthesis. Structures and morphologies of the products were confirmed by results from X-ray diffraction and scanning electron microscopy studies. The organic structure-directing agents (SDAs), diaminopropane and citrate, are found to play different roles in controlling the evolution of these new morphologies. Through the selective adsorptions of SDAs on different crystal facets of the primary ZnO rods, we have alternated the hierarchical growth of secondary and tertiary new complex nanostructures. Roles of the SDA concentration, nucleation time, and growth kinetics in the solution hierarchical ZnO nanosyntheses have all been systematically investigated.

361 citations

Journal ArticleDOI
TL;DR: A Zn(II) based luminescent metal organic framework is synthesized, which acts as a dual functional fluorescent sensor to selectively detect picric acid and palladium(II).

217 citations

Journal ArticleDOI
TL;DR: In this paper, a 2D, 44 net metal-organic framework (MOF) was synthesized and found to behave as a colorimetric detector for the widest variety of small molecules such as different solvents, halobenzenes, N-heterocycles, amine, and nitroaromatic explosives all in vapor phase.
Abstract: A novel Cu(I)-based two-dimensional (2D, 44 net) metal–organic framework (MOF) [Cu(L)(I)]2n·2nDMF·nMeCN (1); L = 4′-(4-methoxyphenyl)-4,2′:6′,4″-terpyridine; DMF = N,N-dimethylformamide, MeCN = acetonitrile) has been synthesized and found to behave as a colorimetric detector for the widest variety of small molecules such as different solvents, halobenzenes, N-heterocycles, amine, and nitroaromatic explosives all in vapor phase through a single crystal to single crystal (SCSC) transformation. The 2D 44 nets are interdigitated with each other to form a supramolecular 3D MOF having 1D pore. The interdigitated layers are stabilized by π···π interactions and CH···π interactions and provide extreme stability up to 380 °C. Interestingly, all guest exchange and encapsulation processes are reversible without loss of structural integrity. Positions of the guest molecules in the host–guest complex have been identified from the crystal structure and found to involve weak interactions with the framework. Notably, this...

214 citations

Journal ArticleDOI
TL;DR: Two novel inorganic-organic hybrid 3D extended networks of Ni(II) and Mn(II), having molecular formulas [(maleate)(2)Ni(3)(bpe)(4)(H(2)O)(4)](NO(3))(2).
Abstract: Two novel inorganic-organic hybrid 3D extended networks of Ni(II) and Mn(II) having molecular formulas [(maleate)(2)Ni(3)(bpe)(4)(H(2)O)(4)](NO(3))(2).H(2)O (1) and [(adipate)Mn(bpe)] (2) (bpe = 1, 2-bis(4-pyridyl)ethane), respectively, have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature (300-2 K) magnetic measurements. Compound 1 crystallizes in the monoclinic system, space group C2/c (No. 15), with chemical formula C(56)H(62)N(10)Ni(3)O(19), a = 30.955(4) A, b = 12.705(3) A, c = 17.058(5) A, beta = 117.26(2) degrees, and Z = 4. Compound 2 crystallizes in the triclinic system, space group Ponemacr; (No. 2), with chemical formula C(18)H(20)MnN(2)O(4), a = 8.492(2) A, b = 9.444(2) A, c = 11.533(3) A, alpha = 97.19(1) degrees, beta = 94.64(1) degrees, gamma = 105.02(1) degrees, and Z = 2. The structure determination reveals for both a 3D network. Compound 1 contains two crystallographically independent Ni(II) ions in different octahedral environments. Ni(1) lies on an inversion center, and its coordination environment comprises two chelating maleate anions and two bpe nitrogen donors, while the Ni(2) ion is surrounded by meridionally disposed three bpe N atoms, two water molecules, and one oxygen donor from the dicarboxylate anion. Of the three crystallographic independent bpe ligand, one presents an anti and the others a gauche conformation. The corresponding N-to-N distances are 9.344, 6.543, and 6.187 A. Variable-temperature magnetic susceptibility measurement of the complex reveals the existence of a dominant ferromagnetic interaction within the molecule. Compound 2 is composed of Mn(2) dimer units linked by adipate anions to form corrugated 2D sheets which, on interconnection through bpe (anti conformation, N-to-N distance of 9.391 A), produces an interpenetrated 3D alpha-polonium-related type net. Complex 2 reveals to be antiferromagnetic fitting data using a dimeric Mn(II) model that considers negligible magnetic transmission through the carbon skeleton of adipate and the bpe pathway.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.
Abstract: Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure–property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

2,239 citations

Journal ArticleDOI
TL;DR: The diversity of magnetic exchange interactions between nearest-neighbour moment carriers is examined, covering from dimers to oligomers and their implications in infinite chains, layers and networks, having a variety of topologies.
Abstract: The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of magnetic metal–organic frameworks, in particular those containing cobalt(II). We examine the diversity of magnetic exchange interactions between nearest-neighbour moment carriers, covering from dimers to oligomers and discuss their implications in infinite chains, layers and networks, having a variety of topologies. We progress to the different forms of short-range magnetic ordering, giving rise to single-molecule-magnets and single-chain-magnets, to long-range ordering of two- and three-dimensional networks (323 references).

2,238 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments which play a great role in various areas ranging from catalysis, medicine, electrochemistry, photochromism,5 to magnetism.
Abstract: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments. They exhibit a great diversity of sizes, nuclearities, and shapes. They are built from the connection of {MOx} polyhedra, M being a d-block element in high oxidation state, usually VIV,V, MoVI, or WVI.1 While these species have been known for almost two centuries, they still attract much interest partly based on their large domains of applications. They play a great role in various areas ranging from catalysis,2 medicine,3 electrochemistry,4 photochromism,5 to magnetism.6 This palette of applications is intrinsically due to the combination of their added value properties (redox properties, large sizes, high negative charges, nucleophilicity...). Parallel to this domain, the organic-inorganic hybrids area has followed a similar expansion during the last 10 years. The concept of organic-inorganic hybrid materials * To whom correspondence should be addressed. E-mail: dolbecq@ chimie.uvsq.fr. Chem. Rev. 2010, 110, 6009–6048 6009

1,475 citations