scispace - formally typeset
Search or ask a question
Author

Sankar Manepalli

Bio: Sankar Manepalli is an academic researcher from Duquesne University. The author has contributed to research in topics: Monoamine neurotransmitter & Serotonin transporter. The author has an hindex of 4, co-authored 4 publications receiving 104 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first available X-ray structure for the plasmalemmal monoamine transporters (MATs) has been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle.
Abstract: With the breakthrough crystallization of the bacterial leucine transporter protein LeuT, the first available X-ray structure for the neurotransmitter/sodium symporter family, development of 3-D computational models is suddenly essential for structure–function studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT models have been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle. With credible MAT models finally in hand, structure-based virtual screening for novel ligands is yielding lead compounds toward the development of new medications for psychostimulant dependence, attention deficit hyperactivity, depression, anxiety, schizophrenia, and other disorders associated with dopamine, norepinephrine, or serotonin dysregulation.

46 citations

Journal ArticleDOI
TL;DR: A computational model of SERT was built based upon the X-ray coordinates of the leucine transporter LeuT, a bacterial NSS homologue, which was used to develop the first SERT structure-based pharmacophore and yielded candidate ligands of diverse scaffolds.
Abstract: The serotonin transporter (SERT), a member of the neurotransmitter sodium symporter (NSS) family, is responsible for the reuptake of serotonin from the synaptic cleft to maintain neurotransmitter homeostasis. SERT is established as an important target in the treatment of anxiety and depression. Because a high-resolution crystal structure is not available, a computational model of SERT was built based upon the X-ray coordinates of the leucine transporter LeuT, a bacterial NSS homologue. The model was used to develop the first SERT structure-based pharmacophore. Virtual screening (VS) of a small molecule structural library using the generated SERT computational model yielded candidate ligands of diverse scaffolds. Pharmacological analysis of the VS hits identified two SERT-selective compounds, potential lead compounds for further SERT-related medication development.

35 citations

Journal ArticleDOI
TL;DR: MAT virtual screening is highlighted as a powerful tool for identifying novel inhibitor chemotypes and chemical fragments for rational inhibitor design and decreased immobility in the tail suspension test comparable to the SSRI fluvoxamine, suggesting that DJLDU-3-79 may possess antidepressant properties.
Abstract: Ligand virtual screening (VS) using the vestibular binding pocket of a three-dimensional (3-D) monoamine transporter (MAT) computational model followed by in vitro pharmacology led to the identification of a human serotonin transporter (hSERT) inhibitor with modest affinity (hSERT Ki = 284 nM). Structural comparison of this VS-elucidated compound, denoted MI-17, to known SERT ligands led to the rational design and synthesis of DJLDU-3-79, a molecular hybrid of MI-17 and dual SERT/5-HT1A receptor antagonist SSA-426. Relative to MI-17, DJLDU-3-79 displayed 7-fold improvement in hSERT binding affinity and a 3-fold increase in [3H]-serotonin uptake inhibition potency at hSERT-HEK cells. This hybrid compound displayed a hSERT:hDAT selectivity ratio of 50:1 and a hSERT:hNET (human norepinephrine transporter) ratio of >200:1. In mice, DJLDU-3-79 decreased immobility in the tail suspension test comparable to the SSRI fluvoxamine, suggesting that DJLDU-3-79 may possess antidepressant properties. This proof of conc...

26 citations

Journal ArticleDOI
TL;DR: Six compounds were found with reactivation capabilities comparable to, or exceeding, those of 2-pralidoxime (2-PAM) against a panel of AChE inactivated by paraoxon, diisopropylfluorophosphate (DFP), fenamiphos, and methamidophos.
Abstract: There is a pressing need for new therapeutics to reactivate covalently inactivated acetylcholinesterase (AChE) due to exposure to organophosphorus (OP) compounds. Current reactivation therapeutics (RTs) are not broad-spectrum and suffer from other liabilities, specifically the inability to cross the blood–brain-barrier. Additionally, the chemical diversity of available therapeutics is small, limiting opportunities for structure–activity relationship (SAR) studies to aid in the design of more effective compounds. In order to find new starting points for the development of oxime-containing therapeutic reactivators and to increase our base of knowledge, we have employed a combination of computational and experimental procedures to identify additional compounds with the real or potential ability to reactivate AChE while augmenting and complementing current knowledge. Computational methods were used to identify previously uninvestigated oxime-containing molecules. Experimentally, six compounds were found with ...

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transport and binding properties of DAT are regulated by complex and overlapping mechanisms that provide neurons with the ability to modulate DA clearance in response to physiological demands, demonstrating their importance for normal neurotransmission, drug abuse, and disease treatments.

338 citations

Journal ArticleDOI
TL;DR: This review discusses the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes, and discusses the challenges that should unravel in the foreseeable future.
Abstract: Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytosk...

202 citations

Journal ArticleDOI
TL;DR: The distances between an SNRI's centroid and the centroids of its two aromatic rings were discovered as the key to the SNRIs' dual-targeting mechanism and revealed SNRis' binding mechanism at an atomistic level, which could be further utilized as structural blueprints for the rational design of privileged drug-like scaffolds treating MDD.
Abstract: Dual inhibition of serotonin and norepinephrine transporters (hSERT and hNET) gives greatly improved efficacy and tolerability for treating major depressive disorder (MDD) compared with selective reuptake inhibitors. Pioneer studies provided valuable information on structure, function, and pharmacology of drugs targeting both hSERT and hNET (serotonin–norepinephrine reuptake inhibitors, SNRIs), and the differential binding mechanism between SNRIs and selective inhibitors of 5-HT (SSRIs) or NE (sNRIs) to their corresponding targets was expected to be able to facilitate the discovery of a privileged drug-like scaffold with improved efficacy. However, the dual-target mechanism of SNRIs was still elusive, and the binding mode distinguishing SNRIs from SSRIs and sNRIs was also unclear. Herein, an integrated computational strategy was adopted to discover the binding mode shared by all FDA approved SNRIs. The comparative analysis of binding free energy at the per-residue level discovered that residues Phe335, Le...

195 citations

Journal ArticleDOI
TL;DR: A versatile reaction cascade leading to highly substituted 1,2,3,6-tetrahydropyridines has been developed that affords the target compounds in up to 95% yield with >95% diastereomeric purity.
Abstract: A versatile reaction cascade leading to highly substituted 1,2,3,6-tetrahydropyridines has been developed. It comprises rhodium(I)-catalyzed C–H activation–alkyne coupling followed by electrocyclization and subsequent acid/borohydride-promoted reduction. This one-pot procedure affords the target compounds in up to 95% yield with >95% diastereomeric purity.

112 citations

Journal ArticleDOI
TL;DR: How molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors are outlined.
Abstract: The human monoamine transporters facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia and Parkinson’s disease. Inhibition of the monoamine transporters is thus an important strategy for treatment of such diseases. The monoamine transporters are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the monoamine transporters, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors.

63 citations