scispace - formally typeset
Search or ask a question
Author

Sanna Syri

Bio: Sanna Syri is an academic researcher from Aalto University. The author has contributed to research in topics: Renewable energy & Electricity market. The author has an hindex of 23, co-authored 88 publications receiving 2453 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs).
Abstract: Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. lead–acid, NaS, Li-ion, and Ni–Cd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

1,279 citations

Journal ArticleDOI
01 Dec 2017-Energy
TL;DR: In this paper, the authors analyzed waste heat utilization from the perspectives of both the data center and district heating network operators, and quantified the system level effects of increased waste heat utilisation by simulating district heating production.

153 citations

Journal ArticleDOI
TL;DR: In this article, the potential for data center waste heat utilization was analyzed in the Nordic countries through life cycle assessment, and an overview of upcoming data center projects where waste heat is utilized is presented.
Abstract: In this study the potential for data center waste heat utilization was analyzed in the Nordic countries. An overview of upcoming data center projects where waste heat is utilized is presented. Especially in Finland data center operators are planning to reuse waste heat in district heating. However, business models between the district heating network operator and data center operator are often not transparent. The implications of economics and emissions on waste heat utilization in district heating were analyzed through life cycle assessment. Currently the biggest barriers for utilizing waste heat are the low quality of waste heat (e.g. low temperature or unstable source of heat) and high investment costs. A systematic 8-step change process was suggested to ensure success in changing the priority of waste heat utilization in the data center and district heating market. Relevant energy efficiency metrics were introduced to support rational decision-making in the reuse of waste heat. Economic calculations showed that the investment payback time is under the estimated lifetime of the heat pump equipment, when waste heat was utilized in district heating. However, the environmental impact of waste heat utilization depends on the fuel, which waste heat replaces.

117 citations

Journal ArticleDOI
01 Dec 2015-Energy
TL;DR: In this paper, the authors investigated the maximum flexibility of the existing energy system in integration of renewable energy, which is an important step before undertaking new renewable energy obligations, by hourly analysis and comprehensive modeling of the energy system including electricity, heat, and transportation, by employing EnergyPLAN tool.

92 citations

Journal ArticleDOI
15 Mar 2015-Energy
TL;DR: In this article, the authors simulate Finnish future energy system with large amounts of CHP (combined heat and power) and wind power, and find that the use of economically optimal thermal storage can increase CHP production by 15% in the case of wind energy providing 24% of the total electricity production in Finland.

79 citations


Cited by
More filters
Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Book ChapterDOI
01 Jan 2014
TL;DR: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2 as discussed by the authors, which is at least 2 times larger than the rate of natural terrestrial creation of ~58 Tg N (50 to 100 Tg nr yr−1) (Table 6.9, Section 1a).
Abstract: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2. This human-caused creation of reactive nitrogen in 2010 is at least 2 times larger than the rate of natural terrestrial creation of ~58 TgN (50 to 100 TgN yr−1) (Table 6.9, Section 1a). Note that the estimate of natural terrestrial biological fixation (58 TgN yr−1) is lower than former estimates (100 TgN yr−1, Galloway et al., 2004), but the ranges overlap, 50 to 100 TgN yr−1 vs. 90 to 120 TgN yr−1, respectively). Of this created reactive nitrogen, NOx and NH3 emissions from anthropogenic sources are about fourfold greater than natural emissions (Table 6.9, Section 1b). A greater portion of the NH3 emissions is deposited to the continents rather than to the oceans, relative to the deposition of NOy, due to the longer atmospheric residence time of the latter. These deposition estimates are lower limits, as they do not include organic nitrogen species. New model and measurement information (Kanakidou et al., 2012) suggests that incomplete inclusion of emissions and atmospheric chemistry of reduced and oxidized organic nitrogen components in current models may lead to systematic underestimates of total global reactive nitrogen deposition by up to 35% (Table 6.9, Section 1c). Discharge of reactive nitrogen to the coastal oceans is ~45 TgN yr−1 (Table 6.9, Section 1d). Denitrification converts Nr back to atmospheric N2. The current estimate for the production of atmospheric N2 is 110 TgN yr−1 (Bouwman et al., 2013).

1,967 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the available electrolysis and methanation technologies with respect to the stringent requirements of the power-to-gas (PtG) chain such as low CAPEX, high efficiency, and high flexibility.

1,841 citations