scispace - formally typeset
Search or ask a question
Author

Santanu Bhattacharya

Bio: Santanu Bhattacharya is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Micelle & Cationic polymerization. The author has an hindex of 67, co-authored 400 publications receiving 14039 citations. Previous affiliations of Santanu Bhattacharya include Central Salt and Marine Chemicals Research Institute & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: From a two-phase mixture of water and oil (either commercial fuel or pure organic solvent), a simple amino acid derivative, N-lauroyl-L-alanine has been shown to be able to gelate the oil phase selectively as mentioned in this paper.

309 citations

Journal ArticleDOI
TL;DR: Probes based on anthra[1,2-d]imidazole-6,11-dione showed selective colorimetric sensing for both cyanide and fluoride ions and exhibited intramolecular charge transfer (ICT) band, which showed significant red-shifts after addition of either the F(-) or CN(-) ion.
Abstract: Probes based on anthra[1,2-d]imidazole-6,11-dione were designed and synthesized for selective ion sensing. Each probe acted as strong colorimetric sensors for fluoride and cyanide ions and exhibited intramolecular charge transfer (ICT) band, which showed significant red-shifts after addition of either the F(-) or CN(-) ion. One of the probes (2) showed selective colorimetric sensing for both cyanide and fluoride ions. In organic medium, 2 showed selective color change with fluoride and cyanide, whereas in aqueous organic medium it showed a ratiometric response selectively for cyanide ion.

293 citations

Journal ArticleDOI
TL;DR: Gene transfer abilities are presented in relation to aggregation properties of different aqueous formulations such as cationic liposomes and surfactant aggregates from various amphiphiles and cationsic lipids, as a function of their hydrophobic parts, linkers and head groups.

260 citations

Journal ArticleDOI
TL;DR: In this article, a detailed measurement of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) is reported.
Abstract: Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m) Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values

249 citations

Journal ArticleDOI
TL;DR: This work reviews syntheses, properties, and applications of various gel-nanocomposites assembled from different metal-based nanoparticles or nanocarbons with tailor-made supramolecular (small molecular) or polymeric physical organogels and hydrogels and presents appropriate rationale to explain most of these phenomena at the molecular level.
Abstract: Gel-nanocomposites are rapidly emerging functional advanced materials having widespread applications in materials and biological sciences. Herein, we review syntheses, properties, and applications of various gel-nanocomposites assembled from different metal-based nanoparticles or nanocarbons [fullerene, carbon nanotubes (CNTs), and graphenes] with tailor-made supramolecular (small molecular) or polymeric physical organogels and hydrogels. Dynamic supramolecular self-assembly of gelators prove to be excellent hosts for the incorporation of these dimensionally different nanomaterials. Thus, gel-nanocomposites doped with preformed/in situ synthesized nanoparticles show magnetic or near-infrared-responsive, catalytic or antibacterial properties. Fullerene-based gel-nanocomposites show applications in organic solar cells. Gel-nanocomposites based on CNTs and graphenes and their functionalized (covalent/noncovalent) analogues find interesting properties including electrical conductivity, viscoelasticity, therma...

245 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
07 Feb 2020-Science
TL;DR: The intrinsic properties of exosomes in regulating complex intracellular pathways has advanced their potential utility in the therapeutic control of many diseases, including neurodegenerative conditions and cancer.
Abstract: The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.

3,715 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: Transition-Metal-Free Reactions, Alkynylation of Heterocycles, and Synthesis of Electronic and Electrooptical Molecules: A Review.
Abstract: 3.7. Palladium Nanoparticles as Catalysts 888 3.8. Other Transition-Metal Complexes 888 3.9. Transition-Metal-Free Reactions 889 4. Applications 889 4.1. Alkynylation of Arenes 889 4.2. Alkynylation of Heterocycles 891 4.3. Synthesis of Enynes and Enediynes 894 4.4. Synthesis of Ynones 896 4.5. Synthesis of Carbocyclic Systems 897 4.6. Synthesis of Heterocyclic Systems 898 4.7. Synthesis of Natural Products 903 4.8. Synthesis of Electronic and Electrooptical Molecules 906

2,522 citations