scispace - formally typeset
Search or ask a question
Author

Santanu Chaudhury

Bio: Santanu Chaudhury is an academic researcher from Seoul National University. The author has an hindex of 1, co-authored 1 publications receiving 25 citations.

Papers
More filters
Proceedings ArticleDOI
16 Jun 2019
TL;DR: This paper reviews the first NTIRE challenge on video super-resolution (restoration of rich details in low-resolution video frames) with focus on proposed solutions and results and gauge the state-of-the-art in videosuper-resolution.
Abstract: This paper reviews the first NTIRE challenge on video super-resolution (restoration of rich details in low-resolution video frames) with focus on proposed solutions and results. A new REalistic and Diverse Scenes dataset (REDS) was employed. The challenge was divided into 2 tracks. Track 1 employed standard bicubic downscaling setup while Track 2 had realistic dynamic motion blurs. Each competition had 124 and 104 registered participants. There were total 14 teams in the final testing phase. They gauge the state-of-the-art in video super-resolution.

36 citations


Cited by
More filters
Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work proposes a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, and proposes a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration.
Abstract: Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects: (1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.

806 citations

Posted Content
TL;DR: Zhang et al. as mentioned in this paper proposed a novel Video Restoration framework with Enhanced Deformable networks, termed EDVR, to address the challenges of aligning multiple frames given large motions and effectively fusing different frames with diverse motion and blur.
Abstract: Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects: (1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable networks, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at this https URL.

133 citations

Posted Content
TL;DR: It is shown that deformable convolution can be decomposed into a combination of spatial warping and convolution, which reveals the commonality of deformable alignment and flow-based alignment in formulation, but with a key difference in their offset diversity.
Abstract: Deformable convolution, originally proposed for the adaptation to geometric variations of objects, has recently shown compelling performance in aligning multiple frames and is increasingly adopted for video super-resolution. Despite its remarkable performance, its underlying mechanism for alignment remains unclear. In this study, we carefully investigate the relation between deformable alignment and the classic flow-based alignment. We show that deformable convolution can be decomposed into a combination of spatial warping and convolution. This decomposition reveals the commonality of deformable alignment and flow-based alignment in formulation, but with a key difference in their offset diversity. We further demonstrate through experiments that the increased diversity in deformable alignment yields better-aligned features, and hence significantly improves the quality of video super-resolution output. Based on our observations, we propose an offset-fidelity loss that guides the offset learning with optical flow. Experiments show that our loss successfully avoids the overflow of offsets and alleviates the instability problem of deformable alignment. Aside from the contributions to deformable alignment, our formulation inspires a more flexible approach to introduce offset diversity to flow-based alignment, improving its performance.

79 citations

Posted Content
TL;DR: A taxonomy is proposed and classify the methods into six sub-categories according to the ways of utilizing inter-frame information for video super-resolution, to alleviate understandability and transferability of existing and future techniques into practice.
Abstract: In recent years, deep learning has made great progress in many fields such as image recognition, natural language processing, speech recognition and video super-resolution. In this survey, we comprehensively investigate 33 state-of-the-art video super-resolution (VSR) methods based on deep learning. It is well known that the leverage of information within video frames is important for video super-resolution. Thus we propose a taxonomy and classify the methods into six sub-categories according to the ways of utilizing inter-frame information. Moreover, the architectures and implementation details of all the methods are depicted in detail. Finally, we summarize and compare the performance of the representative VSR method on some benchmark datasets. We also discuss some challenges, which need to be further addressed by researchers in the community of VSR. To the best of our knowledge, this work is the first systematic review on VSR tasks, and it is expected to make a contribution to the development of recent studies in this area and potentially deepen our understanding to the VSR techniques based on deep learning.

72 citations

Proceedings ArticleDOI
30 Apr 2021
TL;DR: The NTIRE 2021 Challenge on Image Deblurring as mentioned in this paper focused on image deblurring, where both the tracks aim to recover a high-quality clean image from a blurry image, different artifacts are jointly involved.
Abstract: Motion blur is a common photography artifact in dynamic environments that typically comes jointly with the other types of degradation. This paper reviews the NTIRE 2021 Challenge on Image Deblurring. In this challenge report, we describe the challenge specifics and the evaluation results from the 2 competition tracks with the proposed solutions. While both the tracks aim to recover a high-quality clean image from a blurry image, different artifacts are jointly involved. In track 1, the blurry images are in a low resolution while track 2 images are compressed in JPEG format. In each competition, there were 338 and 238 registered participants and in the final testing phase, 18 and 17 teams competed. The winning methods demonstrate the state-of-the-art performance on the image deblurring task with the jointly combined artifacts.

65 citations