scispace - formally typeset
Search or ask a question
Author

Santiago Manen

Bio: Santiago Manen is an academic researcher from ETH Zurich. The author has contributed to research in topics: Video tracking & Object detection. The author has an hindex of 6, co-authored 7 publications receiving 531 citations.

Papers
More filters
Proceedings ArticleDOI
01 Dec 2013
TL;DR: A novel and very efficient method for generic object detection based on a randomized version of Prim's algorithm, using the connectivity graph of an image's super pixels, with weights modelling the probability that neighbouring super pixels belong to the same object.
Abstract: Generic object detection is the challenging task of proposing windows that localize all the objects in an image, regardless of their classes. Such detectors have recently been shown to benefit many applications such as speeding-up class-specific object detection, weakly supervised learning of object detectors and object discovery. In this paper, we introduce a novel and very efficient method for generic object detection based on a randomized version of Prim's algorithm. Using the connectivity graph of an image's super pixels, with weights modelling the probability that neighbouring super pixels belong to the same object, the algorithm generates random partial spanning trees with large expected sum of edge weights. Object localizations are proposed as bounding-boxes of those partial trees. Our method has several benefits compared to the state-of-the-art. Thanks to the efficiency of Prim's algorithm, it samples proposals very quickly: 1000 proposals are obtained in about 0.7s. With proposals bound to super pixel boundaries yet diversified by randomization, it yields very high detection rates and windows that tightly fit objects. In extensive experiments on the challenging PASCAL VOC 2007 and 2012 and SUN2012 benchmark datasets, we show that our method improves over state-of-the-art competitors for a wide range of evaluation scenarios.

340 citations

Proceedings ArticleDOI
Michael Van den Bergh1, Gemma Roig1, Xavier Boix1, Santiago Manen1, Luc Van Gool1 
01 Dec 2013
TL;DR: An online, real-time video super pixel algorithm based on the recently proposed SEEDS super pixels is introduced and a new capability is incorporated which delivers multiple diverse samples (hypotheses) of super pixels in the same image or video sequence.
Abstract: Super pixel and objectness algorithms are broadly used as a pre-processing step to generate support regions and to speed-up further computations. Recently, many algorithms have been extended to video in order to exploit the temporal consistency between frames. However, most methods are computationally too expensive for real-time applications. We introduce an online, real-time video super pixel algorithm based on the recently proposed SEEDS super pixels. A new capability is incorporated which delivers multiple diverse samples (hypotheses) of super pixels in the same image or video sequence. The multiple samples are shown to provide a strong cue to efficiently measure the objectness of image windows, and we introduce the novel concept of objectness in temporal windows. Experiments show that the video super pixels achieve comparable performance to state-of-the-art offline methods while running at 30 fps on a single 2.8 GHz i7 CPU. State-of-the-art performance on objectness is also demonstrated, yet orders of magnitude faster and extended to temporal windows in video.

95 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this article, a path supervision framework is proposed to annotate trajectories and use it to produce a MOT dataset of unprecedented size, with more than 15,000 person trajectories in 720 sequences.
Abstract: Progress in Multiple Object Tracking (MOT) has been historically limited by the size of the available datasets. We present an efficient framework to annotate trajectories and use it to produce a MOT dataset of unprecedented size. In our novel path supervision the annotator loosely follows the object with the cursor while watching the video, providing a path annotation for each object in the sequence. Our approach is able to turn such weak annotations into dense box trajectories. Our experiments on existing datasets prove that our framework produces more accurate annotations than the state of the art, in a fraction of the time. We further validate our approach by crowdsourcing the PathTrack dataset, with more than 15,000 person trajectories in 720 sequences. Tracking approaches can benefit training on such large-scale datasets, as did object recognition. We prove this by re-training an off-the-shelf person matching network, originally trained on the MOT15 dataset, almost halving the misclassification rate. Additionally, training on our data consistently improves tracking results, both on our dataset and on MOT15. On the latter, we improve the top-performing tracker (NOMT) dropping the number of ID Switches by 18% and fragments by 5%.

68 citations

Posted Content
TL;DR: This work presents an efficient framework to annotate trajectories and uses it to produce a MOT dataset of unprecedented size, originally trained on the MOT15 dataset, and proves that this framework produces more accurate annotations than the state of the art, in a fraction of the time.
Abstract: Progress in Multiple Object Tracking (MOT) has been historically limited by the size of the available datasets. We present an efficient framework to annotate trajectories and use it to produce a MOT dataset of unprecedented size. In our novel path supervision the annotator loosely follows the object with the cursor while watching the video, providing a path annotation for each object in the sequence. Our approach is able to turn such weak annotations into dense box trajectories. Our experiments on existing datasets prove that our framework produces more accurate annotations than the state of the art, in a fraction of the time. We further validate our approach by crowdsourcing the PathTrack dataset, with more than 15,000 person trajectories in 720 sequences. Tracking approaches can benefit training on such large-scale datasets, as did object recognition. We prove this by re-training an off-the-shelf person matching network, originally trained on the MOT15 dataset, almost halving the misclassification rate. Additionally, training on our data consistently improves tracking results, both on our dataset and on MOT15. On the latter, we improve the top-performing tracker (NOMT) dropping the number of IDSwitches by 18% and fragments by 5%.

33 citations

Proceedings ArticleDOI
01 Apr 2022
TL;DR: In this article , a video mining pipeline is proposed to transfer captions from image captioning datasets to video clips with no additional manual effort, which achieves competitive performance on video retrieval and video captioning, matching or even outperforming HowTo100M pretraining.
Abstract: A major challenge in text-video and text-audio retrieval is the lack of large-scale training data. This is unlike image-captioning, where datasets are in the order of millions of samples. To close this gap we propose a new video mining pipeline which involves transferring captions from image captioning datasets to video clips with no additional manual effort. Using this pipeline, we create a new large-scale, weakly labelled audio-video captioning dataset consisting of millions of paired clips and captions. We show that training a multimodal transformed based model on this data achieves competitive performance on video retrieval and video captioning, matching or even outperforming HowTo100M pretraining with 20x fewer clips. We also show that our mined clips are suitable for text-audio pretraining, and achieve state of the art results for the task of audio retrieval.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

01 Jan 2006

3,012 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A novel method for generating object bounding box proposals using edges is proposed, showing results that are significantly more accurate than the current state-of-the-art while being faster to compute.
Abstract: The use of object proposals is an effective recent approach for increasing the computational efficiency of object detection. We propose a novel method for generating object bounding box proposals using edges. Edges provide a sparse yet informative representation of an image. Our main observation is that the number of contours that are wholly contained in a bounding box is indicative of the likelihood of the box containing an object. We propose a simple box objectness score that measures the number of edges that exist in the box minus those that are members of contours that overlap the box’s boundary. Using efficient data structures, millions of candidate boxes can be evaluated in a fraction of a second, returning a ranked set of a few thousand top-scoring proposals. Using standard metrics, we show results that are significantly more accurate than the current state-of-the-art while being faster to compute. In particular, given just 1000 proposals we achieve over 96% object recall at overlap threshold of 0.5 and over 75% recall at the more challenging overlap of 0.7. Our approach runs in 0.25 seconds and we additionally demonstrate a near real-time variant with only minor loss in accuracy.

2,892 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: It is observed that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients, with a suitable resizing of their corresponding image windows in to a small fixed size, so as to train a generic objectness measure.
Abstract: Training a generic objectness measure to produce a small set of candidate object windows, has been shown to speed up the classical sliding window object detection paradigm. We observe that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients, with a suitable resizing of their corresponding image windows in to a small fixed size. Based on this observation and computational reasons, we propose to resize the window to 8 × 8 and use the norm of the gradients as a simple 64D feature to describe it, for explicitly training a generic objectness measure. We further show how the binarized version of this feature, namely binarized normed gradients (BING), can be used for efficient objectness estimation, which requires only a few atomic operations (e.g. ADD, BITWISE SHIFT, etc.). Experiments on the challenging PASCAL VOC 2007 dataset show that our method efficiently (300fps on a single laptop CPU) generates a small set of category-independent, high quality object windows, yielding 96.2% object detection rate (DR) with 1, 000 proposals. Increasing the numbers of proposals and color spaces for computing BING features, our performance can be further improved to 99.5% DR.

1,034 citations