scispace - formally typeset
Search or ask a question
Author

Santiago Ontañón

Bio: Santiago Ontañón is an academic researcher from Drexel University. The author has contributed to research in topics: Real-time strategy & Case-based reasoning. The author has an hindex of 27, co-authored 210 publications receiving 3230 citations. Previous affiliations of Santiago Ontañón include Spanish National Research Council & Google.


Papers
More filters
Posted Content
TL;DR: It is shown that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model.
Abstract: Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having $O(1)$ global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.

939 citations

Journal ArticleDOI
TL;DR: An overview of the existing work on AI for real-time strategy (RTS) games focuses on the work around the game StarCraft, which has emerged in the past few years as the unified test bed for this research.
Abstract: This paper presents an overview of the existing work on AI for real-time strategy (RTS) games. Specifically, we focus on the work around the game StarCraft, which has emerged in the past few years as the unified test bed for this research. We describe the specific AI challenges posed by RTS games, and overview the solutions that have been explored to address them. Additionally, we also present a summary of the results of the recent StarCraft AI competitions, describing the architectures used by the participants. Finally, we conclude with a discussion emphasizing which problems in the context of RTS game AI have been solved, and which remain open.

401 citations

Proceedings ArticleDOI
17 Apr 2020
TL;DR: Extended Transformer Construction (ETC) as mentioned in this paper introduces a novel global-local attention mechanism between global tokens and regular input tokens to scale attention to longer inputs and achieves state-of-the-art results on four natural language datasets.
Abstract: Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, "Extended Transformer Construction" (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a "Contrastive Predictive Coding" (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.

248 citations

Book ChapterDOI
13 Aug 2007
TL;DR: This paper presents a real-time case based planning and execution approach designed to deal with RTS games and proposes to extract behavioral knowledge from expert demonstrations in form of individual cases via a case based behavior generator.
Abstract: Artificial Intelligence techniques have been successfully applied to several computer games. However in some kinds of computer games, like real-time strategy (RTS) games, traditional artificial intelligence techniques fail to play at a human level because of the vast search spaces that they entail. In this paper we present a real-time case based planning and execution approach designed to deal with RTS games. We propose to extract behavioral knowledge from expert demonstrations in form of individual cases. This knowledge can be reused via a case based behavior generator that proposes behaviors to achieve the specific open goals in the current plan. Specifically, we applied our technique to the W ARGUS domain with promising results.

152 citations

Proceedings Article
14 Oct 2013
TL;DR: This paper presents a new MCTS algorithm based on Naive Sampling called NaiveMCTS, and evaluates it in the context of real-time strategy (RTS) games, showing that as the branching factor grows, NaiveCMAB performs significantly better than other algorithms.
Abstract: Game tree search in games with large branching factors is a notoriously hard problem. In this paper, we address this problem with a new sampling strategy for Monte Carlo Tree Search (MCTS) algorithms, called Naive Sampling, based on a variant of the Multi-armed Bandit problem called the Combinatorial Multi-armed Bandit (CMAB) problem. We present a new MCTS algorithm based on Naive Sampling called NaiveMCTS, and evaluate it in the context of real-time strategy (RTS) games. Our results show that as the branching factor grows, NaiveMCTS performs significantly better than other algorithms.

118 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
30 Oct 2019-Nature
TL;DR: The agent, AlphaStar, is evaluated, which uses a multi-agent reinforcement learning algorithm and has reached Grandmaster level, ranking among the top 0.2% of human players for the real-time strategy game StarCraft II.
Abstract: Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and its relevance to the real world in terms of its raw complexity and multi-agent challenges. Over the course of a decade and numerous competitions1-3, the strongest agents have simplified important aspects of the game, utilized superhuman capabilities, or employed hand-crafted sub-systems4. Despite these advantages, no previous agent has come close to matching the overall skill of top StarCraft players. We chose to address the challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex domains: a multi-agent reinforcement learning algorithm that uses data from both human and agent games within a diverse league of continually adapting strategies and counter-strategies, each represented by deep neural networks5,6. We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of online games against human players. AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players.

2,595 citations