scispace - formally typeset
Search or ask a question
Author

Santo Fortunato

Bio: Santo Fortunato is an academic researcher from Indiana University. The author has contributed to research in topics: Complex network & Percolation. The author has an hindex of 57, co-authored 178 publications receiving 42502 citations. Previous affiliations of Santo Fortunato include Center for Open Science & University of Catania.


Papers
More filters
Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations

Journal ArticleDOI
TL;DR: In this article, a wide list of topics ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading are reviewed and connections between these problems and other, more traditional, topics of statistical physics are highlighted.
Abstract: Statistical physics has proven to be a fruitful framework to describe phenomena outside the realm of traditional physics. Recent years have witnessed an attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. A wide list of topics are reviewed ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading. The connections between these problems and other, more traditional, topics of statistical physics are highlighted. Comparison of model results with empirical data from social systems are also emphasized.

3,840 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that modularity optimization may fail to identify modules smaller than a scale which depends on the total size of the network and the degree of interconnectedness of the modules, even in cases where modules are unambiguously defined.
Abstract: Detecting community structure is fundamental for uncovering the links between structure and function in complex networks and for practical applications in many disciplines such as biology and sociology. A popular method now widely used relies on the optimization of a quantity called modularity, which is a quality index for a partition of a network into communities. We find that modularity optimization may fail to identify modules smaller than a scale which depends on the total size of the network and on the degree of interconnectedness of the modules, even in cases where modules are unambiguously defined. This finding is confirmed through several examples, both in artificial and in real social, biological, and technological networks, where we show that modularity optimization indeed does not resolve a large number of modules. A check of the modules obtained through modularity optimization is thus necessary, and we provide here key elements for the assessment of the reliability of this community detection method.

2,829 citations

Journal ArticleDOI
TL;DR: This work introduces a class of benchmark graphs, that account for the heterogeneity in the distributions of node degrees and of community sizes, and uses this benchmark to test two popular methods of community detection, modularity optimization, and Potts model clustering.
Abstract: Community structure is one of the most important features of real networks and reveals the internal organization of the nodes. Many algorithms have been proposed but the crucial issue of testing, i.e., the question of how good an algorithm is, with respect to others, is still open. Standard tests include the analysis of simple artificial graphs with a built-in community structure, that the algorithm has to recover. However, the special graphs adopted in actual tests have a structure that does not reflect the real properties of nodes and communities found in real networks. Here we introduce a class of benchmark graphs, that account for the heterogeneity in the distributions of node degrees and of community sizes. We use this benchmark to test two popular methods of community detection, modularity optimization, and Potts model clustering. The results show that the benchmark poses a much more severe test to algorithms than standard benchmarks, revealing limits that may not be apparent at a first analysis.

2,772 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work proposes a heuristic method that is shown to outperform all other known community detection methods in terms of computation time and the quality of the communities detected is very good, as measured by the so-called modularity.
Abstract: We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection method in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2.6 million customers and by analyzing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad-hoc modular networks. .

13,519 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a simple method to extract the community structure of large networks based on modularity optimization, which is shown to outperform all other known community detection methods in terms of computation time.
Abstract: We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection methods in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2 million customers and by analysing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad hoc modular networks.

11,078 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations