scispace - formally typeset
Search or ask a question
Author

Santosh Dhakal

Bio: Santosh Dhakal is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Vaccination & Virus. The author has an hindex of 19, co-authored 76 publications receiving 1276 citations. Previous affiliations of Santosh Dhakal include Tribhuvan University & Ohio Agricultural Research and Development Center.
Topics: Vaccination, Virus, Immune system, Antibody, Immunity


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated the predictive power of weights-of-evidence modeling in landslide hazard assessment in the Lesser Himalaya of Nepal, using a GIS-based map of the southwestern marginal hills of the Kathmandu Valley.

227 citations

Journal ArticleDOI
TL;DR: This work seeks to raise awareness about the male-biased severe outcomes from COVID-19, highlighting the mechanistic differences including in the expression and activity of angiotensin-converting enzyme 2 (ACE2) as well as in antiviral immunity.
Abstract: The current novel coronavirus disease 2019 (COVID-19) pandemic is revealing profound differences between men and women in disease outcomes worldwide In the United States, there has been inconsistent reporting and analyses of male-female differences in COVID-19 cases, hospitalizations, and deaths We seek to raise awareness about the male-biased severe outcomes from COVID-19, highlighting the mechanistic differences including in the expression and activity of angiotensin-converting enzyme 2 (ACE2) as well as in antiviral immunity We also highlight how sex differences in comorbidities, which can be associated with both age and race, impact male-biased outcomes from COVID-19

212 citations

Journal ArticleDOI
12 Jul 2019
TL;DR: It is found that adult females have more robust interleukin-6 production and greater titers and quality of influenza-specific antibodies than either adult males or aged females, and these sex differences in influenza responses are lost in aged individuals.
Abstract: Vaccine-induced immunity declines with age, which may differ between males and females. Using human sera collected before and 21 days after receipt of the monovalent A/Cal/09 H1N1 vaccine, we evaluated cytokine and antibody responses in adult (18-45 years) and aged (65+ years) individuals. After vaccination, adult females developed greater IL-6 and antibody responses than either adult males or aged females, with female antibody responses being positively associated with concentrations of estradiol. To test whether protection against influenza virus challenge was greater in females than males, we primed and boosted adult (8-10 weeks) and aged (68-70 weeks) male and female mice with an inactivated A/Cal/09 H1N1 vaccine or no vaccine and challenged with a drift variant A/Cal/09 virus. As compared with unvaccinated mice, vaccinated adult, but not aged, mice experienced less morbidity and better pulmonary viral clearance following challenge, regardless of sex. Vaccinated adult female mice developed antibody responses that were of greater quantity and quality and more protective than vaccinated adult males. Sex differences in vaccine efficacy diminished with age in mice. To determine the role of sex steroids in vaccine-induced immune responses, adult mice were gonadectomized and hormones (estradiol in females and testosterone in males) were replaced in subsets of animals before vaccination. Vaccine-induced antibody responses were increased in females by estradiol and decreased in males by testosterone. The benefit of elevated estradiol on antibody responses and protection against influenza in females is diminished with age in both mice and humans.

112 citations

Journal ArticleDOI
TL;DR: Chitosan SwIAV nanovaccine delivered by IN route elicited strong cross-reactive mucosal IgA and cellular immune responses in the respiratory tract that resulted in a reduced nasal viral shedding and lung virus titers in pigs.
Abstract: Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs. In this study, we evaluated the immune responses and cross-protective efficacy of IN chitosan encapsulated inactivated SwIAV vaccine in pigs. Killed SwIAV H1N2 (δ-lineage) antigens (KAg) were encapsulated in chitosan polymer-based nanoparticles (CNPs-KAg). The candidate vaccine was administered twice IN as mist to nursery pigs. Vaccinates and controls were then challenged with a zoonotic and virulent heterologous SwIAV H1N1 (γ-lineage). Pigs vaccinated with CNPs-KAg exhibited an enhanced IgG serum antibody and mucosal secretory IgA antibody responses in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reactive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) influenza A virus strains. Prior to challenge, an increased frequency of cytotoxic T lymphocytes, antigen-specific lymphocyte proliferation, and recall IFN-γ secretion by restimulated peripheral blood mononuclear cells in CNPs-KAg compared to control KAg vaccinates were observed. In CNPs-KAg vaccinated pigs challenged with heterologous virus reduced severity of macroscopic and microscopic influenza-associated pulmonary lesions were observed. Importantly, the infectious SwIAV titers in nasal swabs [days post-challenge (DPC) 4] and BAL fluid (DPC 6) were significantly (p < 0.05) reduced in CNPs-KAg vaccinates but not in KAg vaccinates when compared to the unvaccinated challenge controls. As well, an increased frequency of T helper memory cells and increased levels of recall IFNγ secretion by tracheobronchial lymph nodes cells were observed. In summary, chitosan SwIAV nanovaccine delivered by IN route elicited strong cross-reactive mucosal IgA and cellular immune responses in the respiratory tract that resulted in a reduced nasal viral shedding and lung virus titers in pigs. Thus, chitosan-based influenza nanovaccine may be an ideal candidate vaccine for use in pigs, and pig is a useful animal model for preclinical testing of particulate IN human influenza vaccines.

99 citations

Journal ArticleDOI
TL;DR: The utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans was confirmed and inactivated influenza virus delivered through PLGA‐NPs reduced the clinical disease and induced cross‐protective cell‐mediated immune response in a pigmodel.

87 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2010

5,842 citations

01 Aug 2001
TL;DR: The study of distributed systems which bring to life the vision of ubiquitous computing systems, also known as ambient intelligence, is concentrated on in this work.
Abstract: With digital equipment becoming increasingly networked, either on wired or wireless networks, for personal and professional use alike, distributed software systems have become a crucial element in information and communications technologies. The study of these systems forms the core of the ARLES' work, which is specifically concerned with defining new system software architectures, based on the use of emerging networking technologies. In this context, we concentrate on the study of distributed systems which bring to life the vision of ubiquitous computing systems, also known as ambient intelligence.

2,774 citations

Journal ArticleDOI
TL;DR: Clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China is summarized and the need to better understand the impact of sex and gender on incidence and case fatality of the disease is emphasized.
Abstract: Emerging evidence from China suggests that coronavirus disease 2019 (COVID-19) is deadlier for infected men than women with a 2.8% fatality rate being reported in Chinese men versus 1.7% in women. Further, sex-disaggregated data for COVID-19 in several European countries show a similar number of cases between the sexes, but more severe outcomes in aged men. Case fatality is highest in men with pre-existing cardiovascular conditions. The mechanisms accounting for the reduced case fatality rate in women are currently unclear but may offer potential to develop novel risk stratification tools and therapeutic options for women and men. The present review summarizes latest clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China. We discuss potential sex-specific mechanisms modulating the course of disease, such as hormone-regulated expression of genes encoding for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) entry receptors angiotensin converting enzyme (ACE) 2 receptor and TMPRSS2 as well as sex hormone-driven innate and adaptive immune responses and immunoaging. Finally, we elucidate the impact of gender-specific lifestyle, health behavior, psychological stress, and socioeconomic conditions on COVID-19 and discuss sex specific aspects of antiviral therapies. The sex and gender disparities observed in COVID-19 vulnerability emphasize the need to better understand the impact of sex and gender on incidence and case fatality of the disease and to tailor treatment according to sex and gender. The ongoing and planned prophylactic and therapeutic treatment studies must include prospective sex- and gender-sensitive analyses.

772 citations

01 Jan 2011
TL;DR: In this paper, the authors colonized GF mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota.
Abstract: Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4(+) and CD8(+) T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression--all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system.

768 citations