scispace - formally typeset
Search or ask a question
Author

Santosh K. Divvala

Bio: Santosh K. Divvala is an academic researcher from Allen Institute for Artificial Intelligence. The author has contributed to research in topics: Object detection & Semantic similarity. The author has an hindex of 17, co-authored 25 publications receiving 17317 citations. Previous affiliations of Santosh K. Divvala include Carnegie Mellon University & University of Washington.

Papers
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008, using top-performing local appearance detectors as baseline and evaluates several different sources of context and ways to utilize it.
Abstract: This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contribution of contextual information. In this work, we present our analysis on a standard dataset, using top-performing local appearance detectors as baseline. We evaluate several different sources of context and ways to utilize it. While we employ many contextual cues that have been used before, we also propose a few novel ones including the use of geographic context and a new approach for using object spatial support.

532 citations

Posted Content
TL;DR: YOLO as discussed by the authors predicts bounding boxes and class probabilities directly from full images in one evaluation, which can be optimized end-to-end directly on detection performance, and achieves state-of-the-art performance.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is far less likely to predict false detections where nothing exists. Finally, YOLO learns very general representations of objects. It outperforms all other detection methods, including DPM and R-CNN, by a wide margin when generalizing from natural images to artwork on both the Picasso Dataset and the People-Art Dataset.

390 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: A fully-automated approach for learning extensive models for a wide range of variations within any concept, which leverages vast resources of online books to discover the vocabulary of variance, and intertwines the data collection and modeling steps to alleviate the need for explicit human supervision in training the models.
Abstract: Recognition is graduating from labs to real-world applications. While it is encouraging to see its potential being tapped, it brings forth a fundamental challenge to the vision researcher: scalability. How can we learn a model for any concept that exhaustively covers all its appearance variations, while requiring minimal or no human supervision for compiling the vocabulary of visual variance, gathering the training images and annotations, and learning the models? In this paper, we introduce a fully-automated approach for learning extensive models for a wide range of variations (e.g. actions, interactions, attributes and beyond) within any concept. Our approach leverages vast resources of online books to discover the vocabulary of variance, and intertwines the data collection and modeling steps to alleviate the need for explicit human supervision in training the models. Our approach organizes the visual knowledge about a concept in a convenient and useful way, enabling a variety of applications across vision and NLP. Our online system has been queried by users to learn models for several interesting concepts including breakfast, Gandhi, beautiful, etc. To date, our system has models available for over 50, 000 variations within 150 concepts, and has annotated more than 10 million images with bounding boxes.

376 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This work proposes a fully-connected temporal CRF model for reasoning over various aspects of activities that includes objects, actions, and intentions, where the potentials are predicted by a deep network.
Abstract: Actions are more than just movements and trajectories: we cook to eat and we hold a cup to drink from it. A thorough understanding of videos requires going beyond appearance modeling and necessitates reasoning about the sequence of activities, as well as the higher-level constructs such as intentions. But how do we model and reason about these? We propose a fully-connected temporal CRF model for reasoning over various aspects of activities that includes objects, actions, and intentions, where the potentials are predicted by a deep network. End-to-end training of such structured models is a challenging endeavor: For inference and learning we need to construct mini-batches consisting of whole videos, leading to mini-batches with only a few videos. This causes high-correlation between data points leading to breakdown of the backprop algorithm. To address this challenge, we present an asynchronous variational inference method that allows efficient end-to-end training. Our method achieves a classification mAP of 22.4% on the Charades [42] benchmark, outperforming the state-of-the-art (17.2% mAP), and offers equal gains on the task of temporal localization.

179 citations


Cited by
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For \(300 \times 300\) input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS on a Nvidia Titan X and for \(512 \times 512\) input, SSD achieves 76.9 % mAP, outperforming a comparable state of the art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at https://github.com/weiliu89/caffe/tree/ssd.

19,543 citations

Book ChapterDOI
TL;DR: SSD as mentioned in this paper discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, and combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at this https URL .

12,678 citations

Proceedings ArticleDOI
Tsung-Yi Lin1, Priya Goyal2, Ross Girshick2, Kaiming He2, Piotr Dollár2 
07 Aug 2017
TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Abstract: The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors.

12,161 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: YOLO9000 as discussed by the authors is a state-of-the-art real-time object detection system that can detect over 9000 object categories in real time using a novel multi-scale training method, offering an easy tradeoff between speed and accuracy.
Abstract: We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accuracy. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that dont have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. YOLO9000 predicts detections for more than 9000 different object categories, all in real-time.

9,132 citations

Posted Content
TL;DR: YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories, is introduced and a method to jointly train on object detection and classification is proposed, both novel and drawn from prior work.
Abstract: We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that don't have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. But YOLO can detect more than just 200 classes; it predicts detections for more than 9000 different object categories. And it still runs in real-time.

8,505 citations