scispace - formally typeset
Search or ask a question
Author

Sanyang Han

Bio: Sanyang Han is an academic researcher from National University of Singapore. The author has contributed to research in topics: Photon upconversion & Medicine. The author has an hindex of 19, co-authored 37 publications receiving 5307 citations. Previous affiliations of Sanyang Han include Nanjing University & Soochow University (Suzhou).

Papers
More filters
Journal ArticleDOI
TL;DR: A controlled encapsulation strategy is reported that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8).
Abstract: Microporous metal–organic frameworks (MOFs) that display permanent porosity show great promise for a myriad of purposes. The potential applications of MOFs can be developed further and extended by encapsulating various functional species (for example, nanoparticles) within the frameworks. However, despite increasing numbers of reports of nanoparticle/MOF composites, simultaneously to control the size, composition, dispersed nature, spatial distribution and confinement of the incorporated nanoparticles within MOF matrices remains a significant challenge. Here, we report a controlled encapsulation strategy that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8). The incorporated nanoparticles are well dispersed and fully confined within the ZIF-8 crystals. This strategy also allows the controlled incorporation of multiple nanoparticles within each ZIF-8 crystallite. The as-prepared nanoparticle/ZIF-8 composites exhibit active (catalytic, magnetic and optical) properties that derive from the nanoparticles as well as molecular sieving and orientation effects that originate from the framework material.

1,714 citations

Journal ArticleDOI
TL;DR: This review will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications, and present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.
Abstract: Photovoltaic (PV) technologies for solar energy conversion represent promising routes to green and renewable energy generation. Despite relevant PV technologies being available for more than half a century, the production of solar energy remains costly, largely owing to low power conversion efficiencies of solar cells. The main difficulty in improving the efficiency of PV energy conversion lies in the spectral mismatch between the energy distribution of photons in the incident solar spectrum and the bandgap of a semiconductor material. In recent years, luminescent materials, which are capable of converting a broad spectrum of light into photons of a particular wavelength, have been synthesized and used to minimize the losses in the solar-cell-based energy conversion process. In this review, we will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications. In addition, we will also present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.

1,391 citations

Journal ArticleDOI
27 Aug 2018-Nature
TL;DR: All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.
Abstract: The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1–3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination. All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.

1,064 citations

Journal ArticleDOI
TL;DR: The underlying principles of controlling energy transfer through lanthanide doping are presented, the major advances and key challenging issues in improving upconversion luminescence are overviewed, and the likely directions of future research in the field are considered.
Abstract: The enthusiasm for research on lanthanide-doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.

463 citations

Journal ArticleDOI
TL;DR: The rational design, synthesis, and characterization of a new class of core-shell upconversion nanoparticles displaying unprecedented optical properties are presented, and it is shown that the epitaxial growth of an optically inert NaYF(4) layer around a lanthanide-doped NaGdF( 4)@NaGd F(4), core- shell nanoparticle effectively prevents surface quenching of excitation energy.
Abstract: Lanthanide-doped upconversion nanoparticles have been the focus of a growing body of investigation because of their promising applications ranging from data storage to biological imaging and drug delivery. Here we present the rational design, synthesis, and characterization of a new class of core–shell upconversion nanoparticles displaying unprecedented optical properties. Specifically, we show that the epitaxial growth of an optically inert NaYF4 layer around a lanthanide-doped NaGdF4@NaGdF4 core–shell nanoparticle effectively prevents surface quenching of excitation energy. At room temperature, the energy migrates over Gd sublattices and is adequately trapped by the activator ions embedded in host lattices. Importantly, the NaYF4 shell-coating strategy gives access to tunable upconversion emissions from a variety of activators (Dy3+, Sm3+, Tb3+, and Eu3+) doped at very low concentrations (down to 1 mol %). Our mechanistic investigations make possible, for the first time, the realization of efficient emi...

373 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Applications in Theranostics Guanying Chen,*,†,‡ Hailong Qiu,*,‡ and Xiaoyuan Chen.
Abstract: Applications in Theranostics Guanying Chen,*,†,‡ Hailong Qiu,†,‡ Paras N. Prasad,*,‡,§ and Xiaoyuan Chen* †School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China ‡Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260, United States Department of Chemistry, Korea University, Seoul 136-701, Korea Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-2281, United States

1,994 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the significant advances in the development of diverse MOF composites reported till now with special emphases on the synergistic effects and applications of the composites.
Abstract: Metal–organic frameworks (MOFs), also known as porous coordination polymers (PCPs), synthesized by assembling metal ions with organic ligands have recently emerged as a new class of crystalline porous materials. The amenability to design as well as fine-tunable and uniform pore structures makes them promising materials for a variety of applications. Controllable integration of MOFs and functional materials is leading to the creation of new multifunctional composites/hybrids, which exhibit new properties that are superior to those of the individual components through the collective behavior of the functional units. This is a rapidly developing interdisciplinary research area. This review provides an overview of the significant advances in the development of diverse MOF composites reported till now with special emphases on the synergistic effects and applications of the composites. The most widely used and successful strategies for composite synthesis are also presented.

1,738 citations

Journal ArticleDOI
Jing Zhou1, Qian Liu1, Wei Feng1, Yun Sun1, Fuyou Li1 

1,679 citations

Journal ArticleDOI
TL;DR: In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed and proposed mechanisms are presented in detail.
Abstract: Metal–organic frameworks (MOFs) are porous crystalline materials constructed from metal ions or clusters and multidentate organic ligands. Recently, the use of MOFs or MOF composites as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention due to their tunable open metal centres, functional organic linkers, and active guest species in their pores. In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed. These multifunctional MOFs can be categorized by the type of active centre as follows: (i) open metal centres and functional organic linkers in the MOF structure, (ii) active guest sites in the pores and active sites in the MOF structure, and (iii) bimetallic nanoparticles (NPs) on MOF supports. The types of synergistic catalysis and tandem reactions promoted by multifunctional MOFs and their proposed mechanisms are presented in detail. Here, catalytic MOFs with a single type of active site and MOFs that only serve as supports to enhance substrate adsorption are not discussed.

1,394 citations

Journal ArticleDOI
TL;DR: This review will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications, and present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.
Abstract: Photovoltaic (PV) technologies for solar energy conversion represent promising routes to green and renewable energy generation. Despite relevant PV technologies being available for more than half a century, the production of solar energy remains costly, largely owing to low power conversion efficiencies of solar cells. The main difficulty in improving the efficiency of PV energy conversion lies in the spectral mismatch between the energy distribution of photons in the incident solar spectrum and the bandgap of a semiconductor material. In recent years, luminescent materials, which are capable of converting a broad spectrum of light into photons of a particular wavelength, have been synthesized and used to minimize the losses in the solar-cell-based energy conversion process. In this review, we will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications. In addition, we will also present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.

1,391 citations