scispace - formally typeset
Search or ask a question
Author

Sara C. Kozma

Bio: Sara C. Kozma is an academic researcher from University of Cincinnati Academic Health Center. The author has contributed to research in topics: P70-S6 Kinase 1 & Translation (biology). The author has an hindex of 4, co-authored 7 publications receiving 741 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models is presented, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof.
Abstract: We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).

644 citations

Journal ArticleDOI
TL;DR: The most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosomes production and the potential impact of ribosome biogenesis in tumor development are discussed.

98 citations

Journal ArticleDOI
TL;DR: These studies identify a 40S ribosome function independent of those in translation that, with LARP1, mediates the autogenous control of 5′TOP mRNA stability, whose disruption is implicated in the pathophysiology of 5q− syndrome.

74 citations

Journal ArticleDOI
TL;DR: It is demonstrated that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS.
Abstract: Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.

60 citations

Journal ArticleDOI
18 Nov 2011-Blood
TL;DR: It is found that depletion of mTOR drastically affected hematopoiesis: the mTOR flox/flox ;Mx-Cre BM recipient mice showed a marked reduction in total BM cellularity and in the numbers and frequency of myeloid and lymphoid cells, erythrocytes, and platelets in peripheral blood, bone marrow, and thymus, after induced mTOR deletion, resulting in bone marrow failure and lethality.

3 citations


Cited by
More filters
Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations

Journal ArticleDOI
TL;DR: Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review, and a BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM.
Abstract: Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

942 citations

Journal ArticleDOI
TL;DR: It is suggested that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone the authors consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.
Abstract: Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.

671 citations

Journal ArticleDOI
TL;DR: This Review consolidates the key information on the currently available animal models of obesity and diabetes and highlights the advantages, limitations and important caveats of each of these models.
Abstract: More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.

500 citations

Journal ArticleDOI
TL;DR: Recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy are updated and the mechanisms underlying the resistance to mTOR inhibitor in cancer cells are discussed.
Abstract: Mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. mTOR is usually assembled into several complexes such as mTOR complex 1/2 (mTORC1/2). In cooperation with raptor, rictor, LST8, and mSin1, key components in mTORC1 or mTORC2, mTOR catalyzes the phosphorylation of multiple targets such as ribosomal protein S6 kinase β-1 (S6K1), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrients metabolism, growth factor signaling, cell growth, and migration. Activation of mTOR promotes tumor growth and metastasis. Many mTOR inhibitors have been developed to treat cancer. While some of the mTOR inhibitors have been approved to treat human cancer, more mTOR inhibitors are being evaluated in clinical trials. Here, we update recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy. In addition, we discuss the mechanisms underlying the resistance to mTOR inhibitors in cancer cells.

467 citations