scispace - formally typeset
Search or ask a question
Author

Sara Van Poecke

Bio: Sara Van Poecke is an academic researcher from Ghent University. The author has contributed to research in topics: Thymidine & Thymidine kinase. The author has an hindex of 6, co-authored 7 publications receiving 183 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Compound 1e with a 3,4-dichlorophenyl substitution in the alpha-position of fosmidomycin emerged as the most potent analogue of this series, approximately three times more potent in inhibiting the growth of P. falciparum than FR900098, the most powerful representative of this class reported so far.

99 citations

Journal ArticleDOI
TL;DR: Five analogues were synthesized in which the 4-oxygen was replaced by a more lipophilic sulfur atom to probe the influence of this modification on TMPKmt inhibitory activity, and several showed an inhibitory potency in the low micromolar range.

31 citations

Journal ArticleDOI
TL;DR: The synthesis of new thymidine analogues containing a 4- or 5-substituted 1,2,3-triazol-1-yl substituent at the 3'-position of the 2'-deoxyribofuranosyl ring is described.
Abstract: In an effort to increase the potency and selectivity of earlier identified substrate-based inhibitors of mitochondrial thymidine kinase 2 (TK-2), we now describe the synthesis of new thymidine analogues containing a 4- or 5-substituted 1,2,3-triazol-1-yl substituent at the 3′-position of the 2′-deoxyribofuranosyl ring. These analogues were prepared by Cu- and Ru-catalyzed cycloadditions of 3′-azido-3′-deoxythymidine and the appropriate alkynes, which produced the 1,4- and 1,5-triazoles, respectively. Selected analogues showed nanomolar inhibitory activity for TK-2, while virtually not affecting the TK-1 counterpart. Enzyme kinetics indicated a competitive and uncompetitive inhibition profile against thymidine and the cosubstrate ATP, respectively. This behavior is rationalized by suggesting that the inhibitors occupy the substrate-binding site in a TK-2−ATP complex that maintains the enzyme’s active site in a closed conformation through the stabilization of a small lid domain.

27 citations

Journal ArticleDOI
TL;DR: A strong correlation was observed between TK2 and Drosophila melanogaster dNK inhibition, further substantiating the phylogenetic relationship between these two nucleoside kinases.
Abstract: Based on the presumed binding mode of an earlier identified inhibitor, we herein report new 3'-modified nucleosides as potent and selective inhibitors of mitochondrial thymidine kinase (TK2). A series of thirteen 3'-amino-, 3'-guanidino- and 3'-tetrazole-containing nucleosides were synthesized and evaluated for their TK2 inhibitory activity. Within the tetrazole series, compounds with nanomolar inhibitory activity were identified. A homology model of TK2 allowed to elucidate the observed activities. Introduction of a 2-bromovinyl group on C-5 of the pyrimidine base of the most promising 3'-derivative further improved the inhibitory activity, and caused a significant increase in the selectivity for TK2 versus TK1. Interestingly, for the current series of analogues, a strong correlation was observed between TK2 and Drosophila melanogaster dNK inhibition, further substantiating the phylogenetic relationship between these two nucleoside kinases.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of aromatic substituents in the α-position of the phosphonate moiety was investigated, and several analogues were prepared using a linear route involving a 3-aryl-3-phosphoryl propanal intermediate.
Abstract: In view of the promising antimalarial activity of fosmidomycin or its N-acetyl homologue FR900098, the objective of this work was to investigate the influence of aromatic substituents in the α-position of the phosphonate moiety. The envisaged analogues were prepared using a linear route involving a 3-aryl-3-phosphoryl propanal intermediate. The activities of all compounds were evaluated on Eschericia coli 1-deoxy- d -xylulose 5-phosphate reductoisomerase and against two Plasmodium falciparum strains. Compared with fosmidomycin, several analogues displayed enhanced activity towards the P. falciparum strains. Compound 1e with a 3,4-dichlorophenyl substitution in the α-position of fosmidomycin emerged as the most potent analogue of this series. It is approximately three times more potent in inhibiting the growth of P. falciparum than FR900098, the most potent representative of this class reported so far.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.
Abstract: The copper(I)-catalyzed 1,2,3-triazole-forming reaction between azides and terminal alkynes has become the gold standard of 'click chemistry' due to its reliability, specificity, and biocompatibility. Applications of click chemistry are increasingly found in all aspects of drug discovery; they range from lead finding through combinatorial chemistry and target-templated in vitro chemistry, to proteomics and DNA research by using bioconjugation reactions. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen-bonding and dipole interactions. The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.

983 citations

Journal ArticleDOI
TL;DR: This work brings a molecule-centered perspective to the questions of where will new scaffolds come from, when will chemogenetic approaches yield useful new antibiotics and what existing bacterial targets merit contemporary re-examination.
Abstract: There is a continuous need for iterative cycles of antibiotic discovery and development to deal with the selection of resistant pathogens that emerge as therapeutic application of an antibiotic becomes widespread. A short golden age of antibiotic discovery from nature followed by a subsequent golden half century of medicinal chemistry optimization of existing molecular scaffolds emphasizes the need for new antibiotic molecular frameworks. We bring a molecule-centered perspective to the questions of where will new scaffolds come from, when will chemogenetic approaches yield useful new antibiotics and what existing bacterial targets merit contemporary re-examination.

322 citations

Journal ArticleDOI
TL;DR: The ruthenium-catalyzed azide alkyne cycloaddition affords 1,5-disubstituted 1,2,3-triazoles in one step and complements the more established copper-Catalyzed reaction providing the 1,4-isomer.
Abstract: The ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) affords 1,5-disubstituted 1,2,3-triazoles in one step and complements the more established copper-catalyzed reaction providing the 1,4-isomer. The RuAAC reaction has quickly found its way into the organic chemistry toolbox and found applications in many different areas, such as medicinal chemistry, polymer synthesis, organocatalysis, supramolecular chemistry, and the construction of electronic devices. This Review discusses the mechanism, scope, and applications of the RuAAC reaction, covering the literature from the last 10 years.

249 citations

Journal ArticleDOI
TL;DR: This review gives a short description of the malaria disease, briefly addresses the history of antimalarial drug development, and focuses on drugs currently available for malaria therapy, which covers all classes of ants for which at least one drug candidate is in clinical development.
Abstract: Since ancient times, humankind has had to struggle against the persistent onslaught of pathogenic microorganisms. Nowadays, malaria is still the most important infectious disease worldwide. Considerable success in gaining control over malaria was achieved in the 1950s and 60s through landscaping measures, vector control with the insecticide DDT, and the widespread administration of chloroquine, the most important antimalarial agent ever. In the late 1960s, the final victory over malaria was believed to be within reach. However, the parasites could not be eradicated because they developed resistance against the most widely used and affordable drugs of that time. Today, cases of malaria infections are on the rise and have reached record numbers. This review gives a short description of the malaria disease, briefly addresses the history of antimalarial drug development, and focuses on drugs currently available for malaria therapy. The present knowledge regarding their mode of action and the mechanisms of resistance are explained, as are the attempts made by numerous research groups to overcome the resistance problem within classes of existing drugs and in some novel classes. Finally, this review covers all classes of antimalarials for which at least one drug candidate is in clinical development. Antimalarial agents that are solely in early development stages will be addressed in a separate review.

235 citations