scispace - formally typeset
Search or ask a question
Author

Sarah Curran

Bio: Sarah Curran is an academic researcher from King's College London. The author has contributed to research in topics: Autism & Attention deficit hyperactivity disorder. The author has an hindex of 36, co-authored 77 publications receiving 7179 citations. Previous affiliations of Sarah Curran include Sussex Partnership NHS Foundation Trust & Brighton and Sussex Medical School.


Papers
More filters
Journal ArticleDOI
Silvia De Rubeis1, Xin-Xin He2, Arthur P. Goldberg1, Christopher S. Poultney1, Kaitlin E. Samocha3, A. Ercument Cicek2, Yan Kou1, Li Liu2, Menachem Fromer1, Menachem Fromer3, R. Susan Walker4, Tarjinder Singh5, Lambertus Klei6, Jack A. Kosmicki3, Shih-Chen Fu1, Branko Aleksic7, Monica Biscaldi8, Patrick Bolton9, Jessica M. Brownfeld1, Jinlu Cai1, Nicholas G. Campbell10, Angel Carracedo11, Angel Carracedo12, Maria H. Chahrour3, Andreas G. Chiocchetti, Hilary Coon13, Emily L. Crawford10, Lucy Crooks5, Sarah Curran9, Geraldine Dawson14, Eftichia Duketis, Bridget A. Fernandez15, Louise Gallagher16, Evan T. Geller17, Stephen J. Guter18, R. Sean Hill3, R. Sean Hill19, Iuliana Ionita-Laza20, Patricia Jiménez González, Helena Kilpinen, Sabine M. Klauck21, Alexander Kolevzon1, Irene Lee22, Jing Lei2, Terho Lehtimäki, Chiao-Feng Lin17, Avi Ma'ayan1, Christian R. Marshall4, Alison L. McInnes23, Benjamin M. Neale24, Michael John Owen25, Norio Ozaki7, Mara Parellada26, Jeremy R. Parr27, Shaun Purcell1, Kaija Puura, Deepthi Rajagopalan4, Karola Rehnström5, Abraham Reichenberg1, Aniko Sabo28, Michael Sachse, Stephen Sanders29, Chad M. Schafer2, Martin Schulte-Rüther30, David Skuse31, David Skuse22, Christine Stevens24, Peter Szatmari32, Kristiina Tammimies4, Otto Valladares17, Annette Voran33, Li-San Wang17, Lauren A. Weiss29, A. Jeremy Willsey29, Timothy W. Yu3, Timothy W. Yu19, Ryan K. C. Yuen4, Edwin H. Cook18, Christine M. Freitag, Michael Gill16, Christina M. Hultman34, Thomas Lehner35, Aarno Palotie3, Aarno Palotie36, Aarno Palotie24, Gerard D. Schellenberg17, Pamela Sklar1, Matthew W. State29, James S. Sutcliffe10, Christopher A. Walsh19, Christopher A. Walsh3, Stephen W. Scherer4, Michael E. Zwick37, Jeffrey C. Barrett5, David J. Cutler37, Kathryn Roeder2, Bernie Devlin6, Mark J. Daly3, Mark J. Daly24, Joseph D. Buxbaum1 
13 Nov 2014-Nature
TL;DR: Using exome sequencing, it is shown that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate of < 0.05, plus a set of 107 genes strongly enriched for those likely to affect risk (FDR < 0.30).
Abstract: The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

2,228 citations

01 Jan 2015
TL;DR: The contribution of rare and low-frequency variants to human traits is largely unexplored as mentioned in this paper, but the contribution of these variants to the human traits has not yet been fully explored.
Abstract: The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.

824 citations

Journal ArticleDOI
TL;DR: The identification of a novel 421 kb de novo SHANK2 deletion in a patient with autism strengthens the role of synaptic gene dysfunction in ASD but also highlights the presence of putative modifier genes, in keeping with the “multiple hit model” for ASD.
Abstract: Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.

367 citations

Journal ArticleDOI
TL;DR: The liability to ASD and a more broadly defined high-level autism trait phenotype in this large population-based twin sample derives primarily from additive genetic and, to a lesser extent, nonshared environmental effects.
Abstract: Importance Most evidence to date highlights the importance of genetic influences on the liability to autism and related traits. However, most of these findings are derived from clinically ascertained samples, possibly missing individuals with subtler manifestations, and obtained estimates may not be representative of the population. Objectives To establish the relative contributions of genetic and environmental factors in liability to autism spectrum disorder (ASD) and a broader autism phenotype in a large population-based twin sample and to ascertain the genetic/environmental relationship between dimensional trait measures and categorical diagnostic constructs of ASD. Design, Setting, and Participants We used data from the population-based cohort Twins Early Development Study, which included all twin pairs born in England and Wales from January 1, 1994, through December 31, 1996. We performed joint continuous-ordinal liability threshold model fitting using the full information maximum likelihood method to estimate genetic and environmental parameters of covariance. Twin pairs underwent the following assessments: the Childhood Autism Spectrum Test (CAST) (6423 pairs; mean age, 7.9 years), the Development and Well-being Assessment (DAWBA) (359 pairs; mean age, 10.3 years), the Autism Diagnostic Observation Schedule (ADOS) (203 pairs; mean age, 13.2 years), the Autism Diagnostic Interview–Revised (ADI-R) (205 pairs; mean age, 13.2 years), and a best-estimate diagnosis (207 pairs). Main Outcomes and Measures Participants underwent screening using a population-based measure of autistic traits (CAST assessment), structured diagnostic assessments (DAWBA, ADI-R, and ADOS), and a best-estimate diagnosis. Results On all ASD measures, correlations among monozygotic twins (range, 0.77-0.99) were significantly higher than those for dizygotic twins (range, 0.22-0.65), giving heritability estimates of 56% to 95%. The covariance of CAST and ASD diagnostic status (DAWBA, ADOS and best-estimate diagnosis) was largely explained by additive genetic factors (76%-95%). For the ADI-R only, shared environmental influences were significant (30% [95% CI, 8%-47%]) but smaller than genetic influences (56% [95% CI, 37%-82%]). Conclusions and Relevance The liability to ASD and a more broadly defined high-level autism trait phenotype in this large population-based twin sample derives primarily from additive genetic and, to a lesser extent, nonshared environmental effects. The largely consistent results across different diagnostic tools suggest that the results are generalizable across multiple measures and assessment methods. Genetic factors underpinning individual differences in autismlike traits show considerable overlap with genetic influences on diagnosed ASD.

359 citations

Journal ArticleDOI
TL;DR: A novel association was identified between ADHD, the intron 8 polymorphism, and a specific risk haplotype in both English and Taiwanese samples, and interaction between DAT1 genotypes and maternal use of alcohol during pregnancy suggests that Dat1 moderates the environmental risk and has implications for the prevention of ADHD.
Abstract: Context:Attention-deficit/hyperactivitydisorder(ADHD) is a common heritable childhood behavioral disorder. Identifying risk factors for ADHD may lead to improved intervention and prevention. The dopamine transporter gene (DAT1) is associated with ADHD in several studies, with an average 1.2 odds ratio and evidence of heterogeneity across data sets. Objective: To investigate sources of heterogeneity by refining the DAT1 association using additional markers and investigating gene-environment interaction betweenDAT1andmaternaluseofalcoholandtobaccoduring pregnancy. Design: Prospective study. Setting and Patients:Children with ADHD from child behavior clinics in the southeast of England and in the Taipei area of Taiwan.

307 citations


Cited by
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.
Abstract: Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.

3,096 citations

Journal ArticleDOI
TL;DR: A growing number of studies support the idea that physical exercise is a lifestyle factor that might lead to increased physical and mental health throughout life, at the molecular, cellular, systems and behavioural levels.
Abstract: An emerging body of multidisciplinary literature has documented the beneficial influence of physical activity engendered through aerobic exercise on selective aspects of brain function. Human and non-human animal studies have shown that aerobic exercise can improve a number of aspects of cognition and performance. Lack of physical activity, particularly among children in the developed world, is one of the major causes of obesity. Exercise might not only help to improve their physical health, but might also improve their academic performance. This article examines the positive effects of aerobic physical activity on cognition and brain function, at the molecular, cellular, systems and behavioural levels. A growing number of studies support the idea that physical exercise is a lifestyle factor that might lead to increased physical and mental health throughout life.

2,887 citations