scispace - formally typeset
Search or ask a question
Author

Sarah K. Beaver

Bio: Sarah K. Beaver is an academic researcher from University of Brighton. The author has contributed to research in topics: Allosteric regulation. The author has an hindex of 1, co-authored 1 publications receiving 41 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: NQO1 emerges as a good model to investigate loss of function mechanisms in genetic diseases as well as to improve strategies to discriminate between neutral and pathogenic variants in genome-wide sequencing studies.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study reports a novel small molecule that targets HBx to combat chronic HBV infection and reveals a function of NQO1 in HBV replication through the regulation HBx protein stability.

63 citations

Journal ArticleDOI
TL;DR: The proteomic analysis was applied to detect subtle changes in protein profiles between cerebrums in germ-free and specific pathogen-free mice, which successfully showed that >40 proteins were differentially produced between the cerebrum in the presence or absence of bacteria.
Abstract: Data-independent acquisition (DIA)-mass spectrometry (MS)-based proteomic analysis overtop the existing data-dependent acquisition (DDA)-MS-based proteomic analysis to enable deep proteome coverage and precise relative quantitative analysis in single-shot liquid chromatography (LC)-MS/MS. However, DIA-MS-based proteomic analysis has not yet been optimized in terms of system robustness and throughput, particularly for its practical applications. We established a single-shot LC-MS/MS system with an MS measurement time of 90 min for a highly sensitive and deep proteomic analysis by optimizing the conditions of DIA and nanoLC. We identified 7020 and 4068 proteins from 200 ng and 10 ng, respectively, of tryptic floating human embryonic kidney cells 293 (HEK293F) cell digest by performing the constructed LC-MS method with a protein sequence database search. The numbers of identified proteins from 200 ng and 10 ng of tryptic HEK293F increased to 8509 and 5706, respectively, by searching the chromatogram library created by gas-phase fractionated DIA. Moreover, DIA protein quantification was highly reproducible, with median coefficients of variation of 4.3% in eight replicate analyses. We could demonstrate the power of this system by applying the proteomic analysis to detect subtle changes in protein profiles between cerebrums in germ-free and specific pathogen-free mice, which successfully showed that >40 proteins were differentially produced between the cerebrums in the presence or absence of bacteria.

53 citations

Journal ArticleDOI
07 Jul 2020-Cancers
TL;DR: Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy.
Abstract: Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body's antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.

26 citations

Journal ArticleDOI
TL;DR: NQO1 plays a critical role in mediating the anti-inflammatory and antioxidant effects of NKT in LPS-induced neuroinflammation by modulating AMPK and its downstream signaling pathways, according to molecular mechanistic studies.

21 citations

Journal ArticleDOI
12 Nov 2019
TL;DR: It is shown that NQO1apo has a minimally stable folded core holding the protein dimer, with FAD and dicoumarol binding sites populating binding non-competent conformations, a result not previously anticipated by available crystallographic models.
Abstract: Human NAD(P)H:quinone oxidoreductase 1 (NQO1) is a multi-functional protein whose alteration is associated with cancer, Parkinson's and Alzheimer´s diseases. NQO1 displays a remarkable functional chemistry, capable of binding different functional ligands that modulate its activity, stability and interaction with proteins and nucleic acids. Our understanding of this functional chemistry is limited by the difficulty of obtaining structural and dynamic information on many of these states. Herein, we have used hydrogen/deuterium exchange monitored by mass spectrometry (HDXMS) to investigate the structural dynamics of NQO1 in three ligation states: without ligands (NQO1apo), with FAD (NQO1holo) and with FAD and the inhibitor dicoumarol (NQO1dic). We show that NQO1apo has a minimally stable folded core holding the protein dimer, with FAD and dicoumarol binding sites populating binding non-competent conformations. Binding of FAD significantly decreases protein dynamics and stabilizes the FAD and dicoumarol binding sites as well as the monomer:monomer interface. Dicoumarol binding further stabilizes all three functional sites, a result not previously anticipated by available crystallographic models. Our work provides an experimental perspective into the communication of stability effects through the NQO1 dimer, which is valuable for understanding at the molecular level the effects of disease-associated variants, post-translational modifications and ligand binding cooperativity in NQO1.

21 citations