scispace - formally typeset
Search or ask a question
Author

Sarah K. St. Angelo

Bio: Sarah K. St. Angelo is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: van der Waals force & Nanorod. The author has an hindex of 4, co-authored 5 publications receiving 1612 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: By solving the convection-diffusion equation in the frame of the moving rod, it was found that the interfacial tension force scales approximately as SR(2)gamma/muDL, where S is the area-normalized oxygen evolution rate, gamma is the liquid-vapor interfacial pressure, R is the rod radius, mu is the viscosity, D is the diffusion coefficient of oxygen, and L is the length of the rod.
Abstract: Rod-shaped particles, 370 nm in diameter and consisting of 1 μm long Pt and Au segments, move autonomously in aqueous hydrogen peroxide solutions by catalyzing the formation of oxygen at the Pt end. In 2−3% hydrogen peroxide solution, these rods move predominantly along their axis in the direction of the Pt end at speeds of up to 10 body lengths per second. The dimensions of the rods and their speeds are similar to those of multiflagellar bacteria. The force along the rod axis, which is on the order of 10-14 N, is generated by the oxygen concentration gradient, which in turn produces an interfacial tension force that balances the drag force at steady state. By solving the convection-diffusion equation in the frame of the moving rod, it was found that the interfacial tension force scales approximately as SR2γ/μDL, where S is the area-normalized oxygen evolution rate, γ is the liquid−vapor interfacial tension, R is the rod radius, μ is the viscosity, D is the diffusion coefficient of oxygen, and L is the le...

1,786 citations

Journal ArticleDOI
TL;DR: It is shown that roughness at the ends of the nanowires, which locally increased electrostatic repulsion, is critical to correctly predicting the experimentally observed smectic ordering.
Abstract: We investigated the ordering of gold nanowires that settled from an aqueous suspension onto a glass substrate due to gravity. The nanowires, ca. 300 nm in cross-sectional diameter and ca. 2, 4, or 7 μm in length, were coated with 2-mercaptoethanesulfonic acid to provide electrostatic repulsion and prevent aggregation. The layer of nanowires in direct contact with the substrate was examined from below using optical microscopy and found to exhibit smectic-like ordering. The extent of smectic ordering depended on nanowire length, with the shortest (2 μm) nanowires exhibiting the best ordering. To understand the assembly in this system, we used canonical Monte Carlo simulations to model the two-dimensional ordering of the nanowires on a substrate. We accounted for van der Waals and electrostatic interactions between the nanowires. The simulations reproduced the experimental trends and showed that roughness at the ends of the nanowires, which locally increased electrostatic repulsion, is critical to correctly ...

17 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the interfacial tension force scales approximately as SR2γ/μDL, where S is the area-normalized oxygen evolution rate, γ is the liquid−vapor interfacer tension, R is the rod radius, μ is the viscosity, D is the diffusion coefficient of oxygen, and L is the le...
Abstract: Rod-shaped particles, 370 nm in diameter and consisting of 1 μm long Pt and Au segments, move autonomously in aqueous hydrogen peroxide solutions by catalyzing the formation of oxygen at the Pt end. In 2−3% hydrogen peroxide solution, these rods move predominantly along their axis in the direction of the Pt end at speeds of up to 10 body lengths per second. The dimensions of the rods and their speeds are similar to those of multiflagellar bacteria. The force along the rod axis, which is on the order of 10-14 N, is generated by the oxygen concentration gradient, which in turn produces an interfacial tension force that balances the drag force at steady state. By solving the convection-diffusion equation in the frame of the moving rod, it was found that the interfacial tension force scales approximately as SR2γ/μDL, where S is the area-normalized oxygen evolution rate, γ is the liquid−vapor interfacial tension, R is the rod radius, μ is the viscosity, D is the diffusion coefficient of oxygen, and L is the le...

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Abstract: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

3,314 citations

Journal ArticleDOI
TL;DR: The exciting successes in taming molecular-level movement thus far are outlined, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion are highlighted.
Abstract: The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.

2,301 citations

Journal ArticleDOI
TL;DR: The biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below are reviewed, with emphasis on the simple physical picture and fundamental flow physics phenomena in this regime.
Abstract: Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies. (Some figures in this article are in colour only in the electronic version) This article was invited by Christoph Schmidt.

2,274 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a guided tour through the development of artificial self-propelling microparticles and nanoparticles and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.
Abstract: Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

2,188 citations