scispace - formally typeset
Search or ask a question
Author

Sarah Osentoski

Bio: Sarah Osentoski is an academic researcher from Bosch. The author has contributed to research in topics: Robot & Basis function. The author has an hindex of 18, co-authored 32 publications receiving 1536 citations. Previous affiliations of Sarah Osentoski include Brown University & University of Massachusetts Amherst.

Papers
More filters
Proceedings Article
07 Aug 2011
TL;DR: The Fourier basis is described, a linear value function approximation scheme based on the Fourier series that performs well compared to radial basis functions and the polynomial basis, and is competitive with learned proto-value functions.
Abstract: We describe the Fourier basis, a linear value function approximation scheme based on the Fourier series. We empirically demonstrate that it performs well compared to radial basis functions and the polynomial basis, the two most popular fixed bases for linear value function approximation, and is competitive with learned proto-value functions.

313 citations

Journal ArticleDOI
TL;DR: A series of algorithms are presented that draw from recent advances in Bayesian non-parametric statistics and control theory to automatically detect and leverage repeated structure at multiple levels of abstraction in demonstration data, providing robust generalization and transfer in complex, multi-step robotic tasks.
Abstract: Robots exhibit flexible behavior largely in proportion to their degree of knowledge about the world. Such knowledge is often meticulously hand-coded for a narrow class of tasks, limiting the scope of possible robot competencies. Thus, the primary limiting factor of robot capabilities is often not the physical attributes of the robot, but the limited time and skill of expert programmers. One way to deal with the vast number of situations and environments that robots face outside the laboratory is to provide users with simple methods for programming robots that do not require the skill of an expert. For this reason, learning from demonstration (LfD) has become a popular alternative to traditional robot programming methods, aiming to provide a natural mechanism for quickly teaching robots. By simply showing a robot how to perform a task, users can easily demonstrate new tasks as needed, without any special knowledge about the robot. Unfortunately, LfD often yields little knowledge about the world, and thus lacks robust generalization capabilities, especially for complex, multi-step tasks. We present a series of algorithms that draw from recent advances in Bayesian non-parametric statistics and control theory to automatically detect and leverage repeated structure at multiple levels of abstraction in demonstration data. The discovery of repeated structure provides critical insights into task invariants, features of importance, high-level task structure, and appropriate skills for the task. This culminates in the discovery of a finite-state representation of the task, composed of grounded skills that are flexible and reusable, providing robust generalization and transfer in complex, multi-step robotic tasks. These algorithms are tested and evaluated using a PR2 mobile manipulator, showing success on several complex real-world tasks, such as furniture assembly.

200 citations

Proceedings ArticleDOI
24 Dec 2012
TL;DR: This work uses the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of this framework to learn a large library of skills over time.
Abstract: We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.

194 citations

Book ChapterDOI
01 Jan 2017
TL;DR: Rosbridge provides a simple, socket-based programmatic access to robot interfaces and algorithms provided by ROS, the open-source “Robot Operating System”, the current state-of-the-art in robot middleware.
Abstract: We present rosbridge, a middleware abstraction layer which provides robotics technology with a standard, minimalist applications development framework accessible to applications programmers who are not themselves roboticists. Rosbridge provides a simple, socket-based programmatic access to robot interfaces and algorithms provided (for now) by ROS, the open-source “Robot Operating System”, the current state-of-the-art in robot middleware. In particular, it facilitates the use of web technologies such as Javascript for the purpose of broadening the use and usefulness of robotic technology. We demonstrate potential applications in the interface design, education, human-robot interaction and remote laboratory environments.

176 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: A novel method for discovering semantically grounded primitives and incrementally building and improving a finite-state representation of a task in which various contingencies can arise is introduced.
Abstract: Much recent work in robot learning from demonstration has focused on automatically segmenting continuous task demonstrations into simpler, reusable primitives. However, strong assumptions are often made about how these primitives can be sequenced, limiting the potential for data reuse. We introduce a novel method for discovering semantically grounded primitives and incrementally building and improving a finite-state representation of a task in which various contingencies can arise. Specifically, a Beta Process Autoregressive Hidden Markov Model is used to automatically segment demonstrations into motion categories, which are then further subdivided into semantically grounded states in a finite-state automaton. During replay of the task, a data-driven approach is used to collect additional data where they are most needed through interactive corrections, which are then used to improve the finite-state automaton. Together, this allows for intelligent sequencing of primitives to create novel, adaptive behavior that can be incrementally improved as needed. We demonstrate the utility of this technique on a furniture assembly task using the PR2 mobile manipulator.

121 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations

01 Jan 2012
TL;DR: A survey of work in reinforcement learning for behavior generation in robots can be found in this article, where the authors highlight key challenges in robot reinforcement learning as well as notable successes and discuss the role of algorithms, representations and prior knowledge in achieving these successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

1,513 citations

Book
27 Mar 2018
TL;DR: Imitation learning as discussed by the authors is a generalization of reinforcement learning, where a teacher can demonstrate a desired behavior rather than attempting to manually engineer it, which is referred to as imitation learning.
Abstract: As robots and other intelligent agents move from simple environments and problems to more complex, unstructured settings, manually programming their behavior has become increasingly challenging and expensive. Often, it is easier for a teacher to demonstrate a desired behavior rather than attempt to manually engineer it. This process of learning from demonstrations, and the study of algorithms to do so, is called imitation learning. This work provides an introduction to imitation learning. It covers the underlying assumptions, approaches, and how they relate; the rich set of algorithms developed to tackle the problem; and advice on effective tools and implementation. We intend this paper to serve two audiences. First, we want to familiarize machine learning experts with the challenges of imitation learning, particularly those arising in robotics, and the interesting theoretical and practical distinctions between it and more familiar frameworks like statistical supervised learning theory and reinforcement learning. Second, we want to give roboticists and experts in applied artificial intelligence a broader appreciation for the frameworks and tools available for imitation learning. We pay particular attention to the intimate connection between imitation learning approaches and those of structured prediction Daume III et al. [2009]. To structure this discussion, we categorize imitation learning techniques based on the following key criteria which drive algorithmic decisions: 1) The structure of the policy space. Is the learned policy a time-index trajectory (trajectory learning), a mapping from observations to actions (so called behavioral cloning [Bain and Sammut, 1996]), or the result of a complex optimization or planning problem at each execution as is common in inverse optimal control methods [Kalman, 1964, Moylan and Anderson, 1973]. 2) The information available during training and testing. In particular, is the learning algorithm privy to the full state that the teacher possess? Is the learner able to interact with the teacher and gather corrections or more data? Does the learner have a (typically a priori) model of the system with which it interacts? Does the learner have access to the reward (cost) function that the teacher is attempting to optimize? 3) The notion of success. Different algorithmic approaches provide varying guarantees on the resulting learned behavior. These guarantees range from weaker (e.g., measuring disagreement with the agent’s decision) to stronger (e.g., providing guarantees on the performance of the learner with respect to a true cost function, either known or unknown). We organize our work by paying particular attention to distinction (1): dividing imitation learning into directly replicating desired behavior (sometimes called behavioral cloning) and learning the hidden objectives of the desired behavior from demonstrations (called inverse optimal control or inverse reinforcement learning [Russell, 1998]). In the latter case, behavior arises as the result of an optimization problem solved for each new instance that the learner faces. In addition to method analysis, we discuss the design decisions a practitioner must make when selecting an imitation learning approach. Moreover, application examples—such as robots that play table tennis [Kober and Peters, 2009], programs that play the game of Go [Silver et al., 2016], and systems that understand natural language [Wen et al., 2015]— illustrate the properties and motivations behind different forms of imitation learning. We conclude by presenting a set of open questions and point towards possible future research directions for machine learning.

554 citations

Journal ArticleDOI
TL;DR: This article surveys imitation learning methods and presents design options in different steps of the learning process, and extensively discusses combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation.
Abstract: Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years; however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations, without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction, and computer games, to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this article, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications, and highlight current and future research directions.

535 citations