scispace - formally typeset
Search or ask a question
Author

Sarah T. Gille

Bio: Sarah T. Gille is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Sea surface temperature & Ocean current. The author has an hindex of 44, co-authored 176 publications receiving 6714 citations. Previous affiliations of Sarah T. Gille include Massachusetts Institute of Technology & University of East Anglia.


Papers
More filters
Journal ArticleDOI
15 Feb 2002-Science
TL;DR: Autonomous Lagrangian Circulation Explorer floats recorded temperatures in depths between 700 and 1100 meters in the Southern Ocean throughout the 1990s, suggesting that mid-depth Southern Ocean temperatures have risen 0.17°C between the 1950s and the 1980s.
Abstract: Autonomous Lagrangian Circulation Explorer floats recorded temperatures in depths between 700 and 1100 meters in the Southern Ocean throughout the 1990s. These temperature records are systematically warmer than earlier hydrographic temperature measurements from the region, suggesting that mid-depth Southern Ocean temperatures have risen 0.17°C between the 1950s and the 1980s. This warming is faster than that of the global ocean and is concentrated within the Antarctic Circumpolar Current, where temperature rates of change are comparable to Southern Ocean atmospheric temperature increases.

653 citations

Journal ArticleDOI
TL;DR: In this article, long-term trends in the heat content of the Southern Hemisphere ocean are evaluated by comparing temperature profiles collected during the 1990s with profiles collected starting in the 1930s.
Abstract: Long-term trends in the heat content of the Southern Hemisphere ocean are evaluated by comparing temperature profiles collected during the 1990s with profiles collected starting in the 1930s. Data are drawn both from ship-based hydrographic surveys and from autonomous floats. Results show that the upper 1000 m of the Southern Hemisphere ocean has warmed substantially during this time period at all depths. Warming is concentrated within the Antarctic Circumpolar Current (ACC). On a global scale, this warming trend implies that the ocean has gained heat from the atmosphere over the last 50 to 70 years. Although the data do not preclude the possibility that the Southern Ocean has warmed as a result of increased heat fluxes, either into the ocean or within the ocean, in general the strong trend in the Southern Ocean appears regionally consistent with a poleward migration of the ACC, possibly driven by long-term poleward shifts in the winds of the region, as represented by the southern annular mode.

385 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a float profiles of temperature, salinity, and pressure to derive the mixed-layer depth (MLD) in the Southern Ocean, and a monthly climatology was derived from individual MLDs using an objective mapping method.
Abstract: [1] Argo float profiles of temperature, salinity, and pressure are used to derive the mixed-layer depth (MLD) in the Southern Ocean. MLD is determined from individual profiles using both potential density and potential temperature criteria, and a monthly climatology is derived from individual MLDs using an objective mapping method. Quantitative data are available in the auxiliary material. The spatial structures of MLDs are similar in each month, with deep mixed layers within and just north of the Antarctic Circumpolar Current (ACC) in the Pacific and Indian oceans. The deepest mixed layers are found from June to October and are located just north of the ACC where Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) are formed. Examination of individual MLDs indicates that deep mixed layers (MLD ≥ 400 m) from both the density and temperature criteria are concentrated in a narrow surface density band which is within the density range of SAMW. The surface salinity for these deep mixed layers associated with the SAMW formation are slightly fresher compared to historical estimates. Differences in air-sea heat exchanges, wind stress, and wind stress curl in the Pacific and Indian oceans suggest that the mode water formation in each ocean basin may be preconditioned by different processes. Wind mixing and Ekman transport of cold water from the south may assist the SAMW formation in the Indian Ocean. In the eastern Pacific, the formation of mode water is potentially preconditioned by the relative strong cooling and weak stratification from upwelling.

333 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of the Atlantic Ocean in tropical sea surface temperature (SST) teleconnection and found that the Atlantic plays a key role in initiating the tropical wide teleconnection, and the Atlantic-induced anomalies contribute ∼55-75% of the tropical SST and circulation changes during the satellite era.
Abstract: The dipole-like trend of tropical sea surface temperature is investigated and this study finds it to be initiated in the Atlantic Ocean. Atlantic warming drives wind and circulation changes and influences Pacific Ocean surface temperatures. During the past three decades, tropical sea surface temperature (SST) has shown dipole-like trends, with warming over the tropical Atlantic and Indo-western Pacific but cooling over the eastern Pacific. Competing hypotheses relate this cooling, identified as a driver of the global warming hiatus1,2, to the warming trends in either the Atlantic3,4 or Indian Ocean5. However, the mechanisms, the relative importance and the interactions between these teleconnections remain unclear. Using a state-of-the-art climate model, we show that the Atlantic plays a key role in initiating the tropical-wide teleconnection, and the Atlantic-induced anomalies contribute ∼55–75% of the tropical SST and circulation changes during the satellite era. The Atlantic warming drives easterly wind anomalies over the Indo-western Pacific as Kelvin waves and westerly anomalies over the eastern Pacific as Rossby waves. The wind changes induce an Indo-western Pacific warming through the wind–evaporation–SST effect6,7, and this warming intensifies the La Nina-type response in the tropical Pacific by enhancing the easterly trade winds and through the Bjerknes ocean dynamical processes8. The teleconnection develops into a tropical-wide SST dipole pattern. This mechanism, supported by observations and a hierarchy of climate models, reveals that the tropical ocean basins are more tightly connected than previously thought.

331 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations.
Abstract: Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. Most observed trends, however, are not unusual when compared with Antarctic palaeoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response.

265 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of high-density data from the dense mapping phases of Geosat and ERS 1 along with lower-density but higher-accuracy profiles from their repeat orbit phases is used to construct gravity anomalies from the two vertical deflection grids.
Abstract: Closely spaced satellite altimeter profiles collected during the Geosat Geodetic Mission (-6 km) and the ERS 1 Geodetic Phase (8 km) are easily converted to grids of vertical gravity gradient and gravity anomaly. The long-wavelength radial orbit error is suppressed below the noise level of the altimeter by taking the along-track derivative of each profile. Ascending and descending slope profiles are then interpolated onto separate uniform grids. These four grids are combined to form comparable grids of east and north vertical deflection using an iteration scheme that interpolates data gaps with minimum curvature. The vertical gravity gradient is calculated directly from the derivatives of the vertical deflection grids, while Fourier analysis is required to construct gravity anomalies from the two vertical deflection grids. These techniques are applied to a combination of high-density data from the dense mapping phases of Geosat and ERS 1 along with lower-density but higher-accuracy profiles from their repeat orbit phases. A comparison with shipboard gravity data shows the accuracy of the satellite- derived gravity anomaly is about 4-7 mGal for random ship tracks. The accuracy improves to 3 mGal when the ship track follows a Geosat Exact Repeat Mission track line. These data provide the first view of the ocean floor structures in many remote areas of the Earth. Some applications include inertial navigation, prediction of seafloor depth, planning shipboard surveys, plate tectonics, isostasy of volcanoes and spreading ridges, and petroleum exploration.

1,695 citations

Journal ArticleDOI
TL;DR: The Global Ocean Data Analysis Project (GLODAP) as mentioned in this paper uses ocean sampling data from the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the Ocean Atmosphere Carbon Exchange Study (OACES) to produce objectively gridded property maps at a 1° resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients.
Abstract: [1] During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the Ocean Atmosphere Carbon Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the Global Ocean Data Analysis Project (GLODAP). Results were merged into a common format data set, segregated by ocean. For comparison purposes, each ocean data set includes a small number of high-quality historical cruises. The data were subjected to rigorous quality control procedures to eliminate systematic data measurement biases. The calibrated 1990s data were used to estimate anthropogenic CO2, potential alkalinity, CFC watermass ages, CFC partial pressure, bomb-produced radiocarbon, and natural radiocarbon. These quantities were merged into the measured data files. The data were used to produce objectively gridded property maps at a 1° resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients. The mapped fields are interpreted as an annual mean distribution in spite of the inaccuracy in that assumption. Both the calibrated data and the gridded products are available from the Carbon Dioxide Information Analysis Center. Here we describe the important details of the data treatment and the mapping procedure, and present summary quantities and integrals for the various parameters.

1,580 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-model ensemble mean time series provides a true representation of forced change by greenhouse gas (GHG) loading, 33-38% of the observed September trend from 1953-2006 is externally forced, growing to 47-57% from 1979-2006.
Abstract: [1] From 1953 to 2006, Arctic sea ice extent at the end of the melt season in September has declined sharply. All models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) show declining Arctic ice cover over this period. However, depending on the time window for analysis, none or very few individual model simulations show trends comparable to observations. If the multi-model ensemble mean time series provides a true representation of forced change by greenhouse gas (GHG) loading, 33–38% of the observed September trend from 1953–2006 is externally forced, growing to 47–57% from 1979–2006. Given evidence that as a group, the models underestimate the GHG response, the externally forced component may be larger. While both observed and modeled Antarctic winter trends are small, comparisons for summer are confounded by generally poor model performance.

1,536 citations

Journal ArticleDOI
TL;DR: In particular, small-scale mixing processes are necessary to resupply the potential energy removed in the interior by the overturning and eddy-generating process as discussed by the authors, and it is shown that over most of the ocean significant vertical mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing.
Abstract: ▪ AbstractThe coexistence in the deep ocean of a finite, stable stratification, a strong meridional overturning circulation, and mesoscale eddies raises complex questions concerning the circulation energetics. In particular, small-scale mixing processes are necessary to resupply the potential energy removed in the interior by the overturning and eddy-generating process. A number of lines of evidence, none complete, suggest that the oceanic general circulation, far from being a heat engine, is almost wholly governed by the forcing of the wind field and secondarily by deep water tides. In detail however, the budget of mechanical energy input into the ocean is poorly constrained. The now inescapable conclusion that over most of the ocean significant “vertical” mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing. Whether ocean circulation models, either simple box or full numerical ones, neither explic...

1,356 citations

Journal ArticleDOI
28 Jan 1983-Science
TL;DR: Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.
Abstract: The potential for sea ice-albedo feedback to give rise to nonlinear climate change in the Arctic Ocean – defined as a nonlinear relationship between polar and global temperature change or, equivalently, a time-varying polar amplification – is explored in IPCC AR4 climate models. Five models supplying SRES A1B ensembles for the 21 st century are examined and very linear relationships are found between polar and global temperatures (indicating linear Arctic Ocean climate change), and between polar temperature and albedo (the potential source of nonlinearity). Two of the climate models have Arctic Ocean simulations that become annually sea ice-free under the stronger CO 2 increase to quadrupling forcing. Both of these runs show increases in polar amplification at polar temperatures above-5 o C and one exhibits heat budget changes that are consistent with the small ice cap instability of simple energy balance models. Both models show linear warming up to a polar temperature of-5 o C, well above the disappearance of their September ice covers at about-9 o C. Below-5 o C, surface albedo decreases smoothly as reductions move, progressively, to earlier parts of the sunlit period. Atmospheric heat transport exerts a strong cooling effect during the transition to annually ice-free conditions. Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.

1,356 citations