scispace - formally typeset
Search or ask a question
Author

Sari Stark

Bio: Sari Stark is an academic researcher from University of Lapland. The author has contributed to research in topics: Tundra & Soil organic matter. The author has an hindex of 29, co-authored 58 publications receiving 2559 citations. Previous affiliations of Sari Stark include Natural Resources Institute Finland & University of Oulu.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of reindeer grazing on tundra heath vegetation in northern Norway was investigated and the results indicated that intermittent intensive grazing can enhance productivity of summer ranges.
Abstract: In this study, we investigated the effect of reindeer grazing on tundra heath vegetation in northern Norway. Fences, erected 30 yr ago, allowed us to compare winter grazed, lightly summer grazed and heavily summer grazed vegetation at four different sites. At two sites, graminoids dominated the heavily grazed zone completely, while ericoid dwarf shrubs had almost disappeared. In the other two areas, the increase of graminoids was almost significant. At one of the sites where graminoids dominated the heavily grazed area, we also measured plant biomass, primary production and nitrogen cycling. In this site, heavy grazing increased primary production and rate of nitrogen cycling, while moderate grazing decreased primary production. These results were inconsistent with the view that the highest productivity is found at intermediate grazing pressure. These results rather support the hypothesis that intensive grazing can promote a transition of moss-rich heath tundra into productive, graminoid-dominated steppe-like tundra vegetation. Moreover the results suggests that intermittent intensive reindeer grazing can enhance productivity of summer ranges.

274 citations

Journal ArticleDOI
01 May 2004-Oikos
TL;DR: Grazing can increase the primary production through enhancing the soil nutrient cycling rate, even in a long term perspective on an ecological timescale, and provides some support for the keystone herbivore hypothesis.
Abstract: Reindeer have been recorded to increase nutrient cycling rate and primary production in studies from fences almost 40 years old that separate areas with different grazing regimes in northern Fennoscandia. To further understand the mechanism behind the effects of herbivores on primary production, we measured the size of the major C and N pools, soil temperature, litter decomposition rate and N mineralization rate in lightly, moderately and heavily grazed areas along two of these fences. Plant N found in new biomass, indicative of plant N assimilation, was significantly higher in moderately and heavily grazed areas than in lightly grazed areas, which corresponded to a decreased amount of N in old plant parts. The amount of N found in plant litter or organic soil layer did not differ between the grazing treatments. Together with soil N concentrations and litter decomposition rates, soil temperatures were significantly higher in moderately and heavily grazed areas. We conclude that the changes in soil temperature are important for the litter decomposition rate and thus on the nutrient availability for plant uptake. However, the changes in plant community composition appear to be more important for the altered N pools and thus the enhanced primary production. The results provide some support for the keystone herbivore hypothesis, which states that intensive grazing can promote a transition from moss-rich tundra heath to productive grasslands. Grazing altered N fluxes and pools, but the total N pools were similar in all grazing treatments. Our study thus indicates that grazing can increase the primary production through enhancing the soil nutrient cycling rate, even in a long term perspective on an ecological timescale.

208 citations

Journal ArticleDOI
TL;DR: Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems.
Abstract: Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems.

187 citations

Journal ArticleDOI
01 Aug 2000-Oikos
TL;DR: The effects of reindeer grazing on soil biota, decomposition and mineralization processes, and ecosystem properties in a lichen-dominated forest in Finnish Lapland were studied inside and outside a large long term fencedReindeer exclosure area.
Abstract: Reindeer grazing in the Fennoscandian area has a considerable influence on the ground vegetation, and this is likely in turn to have important consequences for the soil biota and decomposition processes. The effects of reindeer grazing on soil biota, decomposition and mineralization processes, and ecosystem properties in a lichen-dominated forest in Finnish Lapland were studied inside and outside a large long term fenced reindeer exclosure area. Decomposition rates of Vaccinium myrtillus leaves in litter bags were retarded in the grazed area relative to the ungrazed area, as well as in subplots from which lichens had been artificially removed to simulate grazing. The effect of reindeer grazing on soil respiration and microbial C was positive in the lichen and litter layers of the soil profile, but retarded in the humus layer. There was no effect of grazing on gross N mineralization and microbial biomass N in the humus and upper mineral soil layer, but net N mineralization was increased by grazing. In these layers soil respiration was reduced by grazing, indicating that reindeer effects reduce the ratio of C to N mineralized by soil microorganisms. Grazing stimulated populations of all trophic groupings of nematodes in the lichen layer and microbe feeding nematodes in the litter layer, indicating that grazing by reindeer has multitrophic effects on the decomposer food-web. Grazing decreased lichen and dwarf shrub biomasses and increased the mass of litter present in the litter layer on an areal basis, but did not significantly alter total C storage per unit area in the humus and mineral soil layers. The N concentration of lichens was increased by grazing, but the N concentrations of both living and dead Pinus sylvestris needles and Empetrum hermaphroditum leaves were not affected. There was some evidence for each of three mechanisms which could account for the grazing effects that we observed in our study. Firstly, reindeer may have changed the composition and quality of litter input by affecting plant species composition and through addition of N from urine and faeces, resulting in a lack of available C relative to N for decomposer organisms. Secondly, the organic matter in the soil may be older in the grazed area, because of reduction of recent production of lichen litter relative to the ungrazed area. The organic matter in the grazed area may have been in a different phase of decomposition from that in the exclosure. Thirdly, the soil microclimate is likely to be affected by reindeer grazing through physical removal of lichen cover on the ground, and this can have a significant influence on soil microbial processes. This is supported by the strong observed effects of experimental removal of lichens on decomposer processes. The impact of reindeer grazing on soil processes may be a result of complex interactions between different mechanisms, and this could help to explain why the below-ground effects of reindeer grazing have different consequences to those which have been observed in recent investigations on other grazing systems.

114 citations

Journal ArticleDOI
TL;DR: In this article, a factorial warming and herbivory-simulation experiment at a subarctic tundra heath in Kilpisjarvi, Finland, in 1994 is described.
Abstract: 1. Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated herbivory affect vegetation, soil nutrient concentrations and soil microbial communities after 10-13 years of exposure. 2. We established a factorial warming and herbivory-simulation experiment at a subarctic tundra heath in Kilpisjarvi, Finland, in 1994. Warming was carried out using the open-top chamber setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003, and composition and function of soil microbial communities in 2006. 3. Warming increased the cover of V. myrtillus, whereas other plant groups did not show any response. Simulated herbivory of V. myrtillus cancelled out the impact of warming on the species cover, and increased the cover of other dwarf shrubs. 4. The concentrations of NH4+-N, and microbial biomass C and N in the soil were significantly reduced by warming after 10 treatment years but not after 13 treatment years. The reduction in NH4+-N by warming was significant only without simultaneous herbivory treatment, which indicates that simulated herbivory reduced N uptake by vegetation. 5. Soil microbial community composition, based on phospholipid fatty acid (PLFA) analysis, was slightly altered by warming. The activity of cultivable bacterial and fungal communities was significantly increased by warming and the substrate utilization patterns were influenced by warming and herbivory. 6. Synthesis. Our results show that warming increases the cover of V. myrtillus, which seems to enhance the nutrient sink strength of vegetation in the studied ecosystem. However, herbivory partially negates the effect of warming on plant N uptake and interacts with the effect of warming on microbial N immobilization. Our study demonstrates that effects of warming on soil microorganisms are likely to differ in the presence and absence of herbivores. (Less)

108 citations


Cited by
More filters
Journal ArticleDOI
11 Jun 2004-Science
TL;DR: This work shows how aboveground and belowground components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed.
Abstract: All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed. As such, aboveground and belowground communities can be powerful mutual drivers, with both positive and negative feedbacks. A combined aboveground-belowground approach to community and ecosystem ecology is enhancing our understanding of the regulation and functional significance of biodiversity and of the environmental impacts of human-induced global change phenomena.

3,683 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature on well-constrained carbon:nitrogen:phosphorus (C:N:P) ratios in planktonic biomass has motivated ecologists to search for similar patterns in terrestrial ecosystems.
Abstract: Well-constrained carbon:nitrogen:phosphorus (C:N:P) ratios in planktonic biomass, and their importance in advancing our understanding of biological processes and nutrient cycling in marine ecosystems, has motivated ecologists to search for similar patterns in terrestrial ecosystems. Recent analyses indicate the existence of “Redfield-like” ratios in plants, and such data may provide insight into the nature of nutrient limitation in terrestrial ecosystems. We searched for analogous patterns in the soil and the soil microbial biomass by conducting a review of the literature. Although soil is characterized by high biological diversity, structural complexity and spatial heterogeneity, we found remarkably consistent C:N:P ratios in both total soil pools and the soil microbial biomass. Our analysis indicates that, similar to marine phytoplankton, element concentrations of individual phylogenetic groups within the soil microbial community may vary, but on average, atomic C:N:P ratios in both the soil (186:13:1) and the soil microbial biomass (60:7:1) are well-constrained at the global scale. We did see significant variation in soil and microbial element ratios between vegetation types (i.e., forest versus grassland), but in most cases, the similarities in soil and microbial element ratios among sites and across large scales were more apparent than the differences. Consistent microbial biomass element ratios, combined with data linking specific patterns of microbial element stoichiometry with direct evidence of microbial nutrient limitation, suggest that measuring the proportions of C, N and P in the microbial biomass may represent another useful tool for assessing nutrient limitation of ecosystem processes in terrestrial ecosystems.

1,704 citations

Journal ArticleDOI
TL;DR: This article used repeat photography, long-term ecological monitoring and dendrochronology to document shrub expansion in arctic, high-latitude and alpine tundra.
Abstract: Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra

1,153 citations

Journal ArticleDOI
01 Sep 2003-Ecology
TL;DR: This paper identifies several mechanisms by which herbivores can indirectly affect decomposer organisms and soil processes through altering the quantity and quality of resources entering the soil and proposes that a variety of possible mechanisms is responsible for the idiosyncratic nature of herbivore effects on soil biota and ecosystem function.
Abstract: Understanding how terrestrial ecosystems function requires a combined aboveground–belowground approach, because of the importance of feedbacks that occur between herbivores, producers, and the decomposer subsystem. In this paper, we identify several mechanisms by which herbivores can indirectly affect decomposer organisms and soil processes through altering the quantity and quality of resources entering the soil. We show that these mechanisms are broadly similar in nature for both foliar and root herbivory, regardless of whether they operate in the short term as a result of physiological responses of individual plants to herbivore attack or long-term following alteration of plant community structure by herbivores and subsequent changes in the quality of litter inputs to soil. We propose that a variety of possible mechanisms is responsible for the idiosyncratic nature of herbivore effects on soil biota and ecosystem function; positive, negative, or neutral effects of herbivory are possible depending upon the balance of these different mechanisms. However, we predict that positive effects of herbivory on soil biota and soil processes are most common in ecosystems of high soil fertility and high consumption rates, whereas negative effects are most common in unproductive ecosystems with low consumption rates. The significance of multiple-species herbivore communities is also emphasized, and we propose that if resource use complementarity among herbivore species or functional groups leads to greater total consumption of phytomass, and thus greater net herbivory, then both positive and negative consequences of increasing herbivore diversity for belowground properties and processes are theoretically possible. Research priorities are highlighted and include a need for comparative studies of herbivore impacts on above- and belowground processes across ecosystems of varying productivity, as well as a need for experimental testing of the influence of antiherbivore defense compounds on complex multitrophic interactions in the rhizosphere and the significance of multiple herbivore species communities on these plant–soil interactions.

970 citations