scispace - formally typeset
Search or ask a question
Author

Sarit Mukherjee

Bio: Sarit Mukherjee is an academic researcher from Bell Labs. The author has contributed to research in topics: Network packet & Cloud computing. The author has an hindex of 25, co-authored 97 publications receiving 2997 citations. Previous affiliations of Sarit Mukherjee include University of Maryland, College Park & Princeton University.


Papers
More filters
Proceedings ArticleDOI
16 Aug 2013
TL;DR: ElastiCon is proposed, an elastic distributed controller architecture in which the controller pool is dynamically grown or shrunk according to traffic conditions and the load is dynamically shifted across controllers, which conforms with the Openflow standard.
Abstract: Distributed controllers have been proposed for Software Defined Networking to address the issues of scalability and reliability that a centralized controller suffers from. One key limitation of the distributed controllers is that the mapping between a switch and a controller is statically configured, which may result in uneven load distribution among the controllers. To address this problem, we propose ElastiCon, an elastic distributed controller architecture in which the controller pool is dynamically grown or shrunk according to traffic conditions and the load is dynamically shifted across controllers. We propose a novel switch migration protocol for enabling such load shifting, which conforms with the Openflow standard. We also build a prototype to demonstrate the efficacy of our design.

567 citations

Proceedings ArticleDOI
20 Oct 2014
TL;DR: ElastiCon is proposed, an elastic distributed controller architecture in which the controller pool is dynamically grown or shrunk according to traffic conditions, which automatically balances the load across controllers thus ensuring good performance at all times irrespective of the traffic dynamics.
Abstract: Software Defined Networking (SDN) has become a popular paradigm for centralized control in many modern networking scenarios such as data centers and cloud. For large data centers hosting many hundreds of thousands of servers, there are few thousands of switches that need to be managed in a centralized fashion, which cannot be done using a single controller node. Previous works have proposed distributed controller architectures to address scalability issues. A key limitation of these works, however, is that the mapping between a switch and a controller is statically configured, which may result in uneven load distribution among the controllers as traffic conditions change dynamically. To address this problem, we propose ElastiCon, an elastic distributed controller architecture in which the controller pool is dynamically grown or shrunk according to traffic conditions. To address the load imbalance caused due to spatial and temporal variations in the traffic conditions, ElastiCon automatically balances the load across controllers thus ensuring good performance at all times irrespective of the traffic dynamics. We propose a novel switch migration protocol for enabling such load shifting, which conforms with the Openflow standard. We further design the algorithms for controller load balancing and elasticity. We also build a prototype of ElastiCon and evaluate it extensively to demonstrate the efficacy of our design.

243 citations

Proceedings ArticleDOI
05 May 2011
TL;DR: This paper devise various online and offline algorithms to arrive at a good ordering of jobs to minimize the overall job completion times, and proposes approximation algorithms that work within a factor of 3 of the optimal.
Abstract: Large-scale data processing needs of enterprises today are primarily met with distributed and parallel computing in data centers. MapReduce has emerged as an important programming model for these environments. Since today's data centers run many MapReduce jobs in parallel, it is important to find a good scheduling algorithm that can optimize the completion times of these jobs. While several recent papers focused on optimizing the scheduler, there exists very little theoretical understanding of the scheduling problem in the context of MapReduce. In this paper, we seek to address this problem by first presenting a simplified abstraction of the MapReduce scheduling problem, and then formulate the scheduling problem as an optimization problem.We devise various online and offline algorithms to arrive at a good ordering of jobs to minimize the overall job completion times. Since optimal solutions are hard to compute (NP-hard), we propose approximation algorithms that work within a factor of 3 of the optimal. Using simulations, we also compare our online algorithm with standard scheduling strategies such as FIFO, Shortest Job First and show that our algorithm consistently outperforms these across different job distributions.

178 citations

Proceedings ArticleDOI
08 Jul 2014
TL;DR: This work presents a new model for cloud computing, which it is called the Edge Cloud, that addresses edge computing specific issues by augmenting the traditional data center cloud model with service nodes placed at the network edges.
Abstract: Edge services become increasingly important as the Internet transforms into an Internet of Things (IoT). Edge services require bounded latency, bandwidth reduction between the edge and the core, service resiliency with graceful degradation, and access to resources visible only inside the NATed and secured edge networks. While the data center based cloud excels at providing general purpose computation/storage at scale, it is not suitable for edge services. We present a new model for cloud computing, which we call the Edge Cloud, that addresses edge computing specific issues by augmenting the traditional data center cloud model with service nodes placed at the network edges. We describe the architecture of the Edge Cloud and its implementation as an overlay hybrid cloud using the industry standard OpenStack cloud management framework. We demonstrate the advantages garnered by two new classes of applications enabled by the Edge Cloud - a highly accurate indoor localization that saves on latency, and a scalable and resilient video monitoring that saves on bandwidth.

165 citations

Proceedings ArticleDOI
17 Aug 2009
TL;DR: This paper describes a preliminary prototype system, built using Openflow components, that demonstrates the feasibility of this architecture in enabling seamless migration of virtual machines and in enhancing delivery of cloud-based services.
Abstract: It is envisaged that services and applications will migrate to a cloud-computing paradigm where thin-clients on user devices access, over the network, applications hosted in data centers by application service providers. Examples are cloud based gaming applications and cloud-supported virtual desktops. For good performance and efficiency, it is critical that these services are delivered from locations that are the best for the current (dynamically changing) set of users. To achieve this, we expect that services will be hosted on virtual machines in interconnected data centers and that these virtual machines will migrate dynamically to locations best suited for the current user population. A basic network infrastructure need then is the ability to migrate virtual machines across multiple networks without losing service continuity. In this paper, we develop mechanisms to accomplish this using a network-virtualization architecture that relies on a set of distributed forwarding elements with centralized control (borrowing on several recent proposals in a similar vein). We describe a preliminary prototype system, built using Openflow components, that demonstrates the feasibility of this architecture in enabling seamless migration of virtual machines and in enhancing delivery of cloud-based services.

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Journal ArticleDOI
TL;DR: The SDN architecture and the OpenFlow standard in particular are presented, current alternatives for implementation and testing of SDN-based protocols and services are discussed, current and future SDN applications are examined, and promising research directions based on the SDN paradigm are explored.
Abstract: The idea of programmable networks has recently re-gained considerable momentum due to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, often referred to as a ''radical new idea in networking'', promises to dramatically simplify network management and enable innovation through network programmability. This paper surveys the state-of-the-art in programmable networks with an emphasis on SDN. We provide a historic perspective of programmable networks from early ideas to recent developments. Then we present the SDN architecture and the OpenFlow standard in particular, discuss current alternatives for implementation and testing of SDN-based protocols and services, examine current and future SDN applications, and explore promising research directions based on the SDN paradigm.

2,013 citations

Posted Content
TL;DR: Software-Defined Networking (SDN) as discussed by the authors is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network.
Abstract: Software-Defined Networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound APIs, network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms -- with a focus on aspects such as resiliency, scalability, performance, security and dependability -- as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

1,968 citations

Journal ArticleDOI
TL;DR: This paper describes a new approximation of fair queuing that achieves nearly perfect fairness in terms of throughput, requires only O(1) work to process a packet, and is simple enough to implement in hardware.
Abstract: Fair queuing is a technique that allows each flow passing through a network device to have a fair share of network resources. Previous schemes for fair queuing that achieved nearly perfect fairness were expensive to implement; specifically, the work required to process a packet in these schemes was O(log(n)), where n is the number of active flows. This is expensive at high speeds. On the other hand, cheaper approximations of fair queuing reported in the literature exhibit unfair behavior. In this paper, we describe a new approximation of fair queuing, that we call deficit round-robin. Our scheme achieves nearly perfect fairness in terms of throughput, requires only O(1) work to process a packet, and is simple enough to implement in hardware. Deficit round-robin is also applicable to other scheduling problems where servicing cannot be broken up into smaller units (such as load balancing) and to distributed queues.

1,589 citations