scispace - formally typeset
Search or ask a question
Author

Sarith P. Sathian

Bio: Sarith P. Sathian is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Graphene & Interfacial thermal resistance. The author has an hindex of 14, co-authored 56 publications receiving 624 citations. Previous affiliations of Sarith P. Sathian include National Institute of Technology Calicut.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the formation and breakup of nanojets (NJs) developing from high pressure into vacuum is investigated using molecular dynamics (MD) based on non-Hamiltonian formulations.
Abstract: Conventional macroscopic jet theory relies heavily on experimental correlations which cannot be easily extended to the nanoscale regime. Moreover, the fluid dynamic effects at small length scales and their contribution to the development of nanoscale liquid structures are fundamentally different from their macroscopic counterparts. This coupled with the high spatial and temporal resolution requirements at nanoscale domains make molecular dynamics (MD) an excellent tool for studying such structures. In this study, the formation and breakup of nanojets (NJs) developing from high pressure into vacuum is investigated using MD based on non-Hamiltonian formulations. By ejecting the equilibrated argon atoms through various nozzle geometries and diameters, nanoscale jet flows were generated. The dependence of the jet structure on nozzle geometry and diameter is studied. The influence of geometry on NJ formation is also studied along with issues involved in the equilibration and thermostat coupling parameter. Vari...

5 citations

Journal ArticleDOI
TL;DR: The effect of an electric field along the longitudinal axis of a nanoscale liquid thread is studied to understand the mechanism of breakup and the results show that the axial electric field has a stabilizing effect even at nanoscales.
Abstract: The effect of an electric field along the longitudinal axis of a nanoscale liquid thread is studied to understand the mechanism of breakup. The Rayleigh instability (commonly known as the Plateau--Rayleigh instability) of a nanosized liquid water thread is investigated by using molecular dynamics simulations. The breakup mechanism of the liquid nanothread is studied by analyzing the temporal evolution of the thread radius. The influence of the temperature of the liquid nanothread and the electric-field strength on the stability and breakup is the major focus of the study. The results show that the axial electric field has a stabilizing effect even at nanoscale. The results from the simulations are in good agreement with the solutions obtained from the dispersion relation developed by Hohman et al. for the liquid thread. The critical electric-field strength necessary to avoid the breakup of the liquid thread is calculated and other effects such as the splaying and whipping instability are also discussed.

5 citations

Journal ArticleDOI
16 Mar 2022-Langmuir
TL;DR: In this paper , the Kapitza resistance at hexagonal boron nitride nanotube (hBNNT)-water interface reduces with an increase in diameter of the nanotub due to more aggregation of water molecules per unit surface area.
Abstract: Electrostatic interactions in nanoscale systems can influence the heat transfer mechanism and interfacial properties. This study uses molecular dynamics simulations to investigate the impact of various electrostatic interactions on the Kapitza resistance (Rk) on a hexagonal boron nitride-water system. The Kapitza resistance at hexagonal boron nitride nanotube (hBNNT)-water interface reduces with an increase in diameter of the nanotube due to more aggregation of water molecules per unit surface area. An increase in the partial charges on boron and nitride caused the reduction in Rk. With the increase in partial charge, a better hydrogen bonding between hBNNT and water was observed, whereas the structure and order of the water molecules remain the same. Nevertheless, the addition of NaCl salt into water does not have any influence on interfacial thermal transport. Rk remains unchanged with electrolyte concentration because the cumulative Coulombic interaction between the ions and the hBNNT is significantly less when compared with water molecules. Furthermore, the effect of electric field strength on interfacial heat transfer is also investigated by providing uniform positive and negative surface charges on the outermost hBN layers. Rk is nearly independent of the practical range of applied electric fields and decreases with an increasing electric field for extreme field strengths until the electrofreezing phenomenon occurs. The ordering of water molecules toward the charged surface leads to an increase in the layering effect, causing the reduction in Rk in the presence of an electric field.

5 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the gas surface interaction properties of the gas mixture, in non-continuum regime, the rarefied gas confined in a nanochannel is considered.

4 citations

Journal ArticleDOI
TL;DR: A three-dimensional molecular dynamics simulation has been carried out to examine the streamwise inhomogeneity of flow characteristics in a nanochannel and establishes that the variation of MAC along the length of the channel has to be considered in modeling the nano- and microtransport systems.
Abstract: Accommodation coefficients (ACs) are the phenomenological parameters used to evaluate gas-wall interactions. The gas transport through a finite length nanochannel will confront the variation of properties along the length of the channel. A three-dimensional molecular dynamics simulation has been carried out to examine this streamwise inhomogeneity of flow characteristics in a nanochannel. The rarefaction of the flow to the downstream direction is a crucial behavior in a pressure-driven nanochannel flow. This is manifested as the variation in velocity and temperature along the length of the channel. Subsequently, the interactions between the gas and wall particles will get reduced considerably. Moreover, the characteristics near the wall are examined in detail. A nonhomogeneous behavior in density and velocity profile near the wall is reported. Further, the momentum accommodation coefficient (MAC) in both the tangential and normal directions is examined along the lengthwise sections of the channel. The results show a significant variation of tangential and normal MACs along the length. Further, three channels with different length-to-characteristic dimension ($L/H$) ratios are considered to investigate the effect of $L/H$ ratio. All three channels are subjected to the same pressure drop along the length. It is observed that the MACs and slip length show distinct behavior for different ($L/H$) ratios. The work establishes that the variation of MAC along the length of the channel has to be considered in modeling the nano- and microtransport systems.

2 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A simple model is proposed based on the concept of effective slip, which is a linear sum of true slip, depending on a contact angle, and apparent slip, caused by a spatial variation of the confined water viscosity as a function of wettability as well as the nanopore dimension, which shows that the flow capacity of confined water is 10−1∼107 times that calculated by the no-slip Hagen–Poiseuille equation.
Abstract: Understanding and controlling the flow of water confined in nanopores has tremendous implications in theoretical studies and industrial applications. Here, we propose a simple model for the confined water flow based on the concept of effective slip, which is a linear sum of true slip, depending on a contact angle, and apparent slip, caused by a spatial variation of the confined water viscosity as a function of wettability as well as the nanopore dimension. Results from this model show that the flow capacity of confined water is 10 −1 ∼10 7 times that calculated by the no-slip Hagen–Poiseuille equation for nanopores with various contact angles and dimensions, in agreement with the majority of 53 different study cases from the literature. This work further sheds light on a controversy over an increase or decrease in flow capacity from molecular dynamics simulations and experiments.

393 citations

01 Mar 2011
TL;DR: In this paper, high magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers grown by chemical vapor deposition was performed. But the results were limited to the case of twisted bilayer bilayer graphene.
Abstract: We report high magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers grown by chemical vapor deposition. For twist angles exceeding ~3° the low energy carriers exhibit Landau level spectra characteristic of massless Dirac fermions. Above 20° the layers effectively decouple and the electronic properties are indistinguishable from those in single-layer graphene, while for smaller angles we observe a slowdown of the carrier velocity which is strongly angle dependent. At the smallest angles the spectra are dominated by twist-induced van Hove singularities and the Dirac fermions eventually become localized. An unexpected electron-hole asymmetry is observed which is substantially larger than the asymmetry in either single or untwisted bilayer graphene.

353 citations

Journal ArticleDOI
TL;DR: There is a range of polymer lengths in which the system is approximately translationally invariant, and a coarse-grained description of this regime is developed, and general features of the distribution of times for the polymer to pass through the pore may be deduced.
Abstract: Motivated by experiments in which a polynucleotide is driven through a proteinaceous pore by an electric field, we study the diffusive motion of a polymer threaded through a narrow channel with which it may have strong interactions. We show that there is a range of polymer lengths in which the system is approximately translationally invariant, and we develop a coarse-grained description of this regime. From this description, general features of the distribution of times for the polymer to pass through the pore may be deduced. We also introduce a more microscopic model. This model provides a physically reasonable scenario in which, as in experiments, the polymer's speed depends sensitively on its chemical composition, and even on its orientation in the channel. Finally, we point out that the experimental distribution of times for the polymer to pass through the pore is much broader than expected from simple estimates, and speculate on why this might be.

329 citations