scispace - formally typeset
Search or ask a question
Author

Sarkis K. Mazmanian

Bio: Sarkis K. Mazmanian is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Microbiome & Gut flora. The author has an hindex of 68, co-authored 143 publications receiving 36491 citations. Previous affiliations of Sarkis K. Mazmanian include University of Chicago & Brigham and Women's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut are discussed, and the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms is raised.
Abstract: Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host–symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.

4,079 citations

Journal ArticleDOI
15 Jul 2005-Cell
TL;DR: During colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system.

2,520 citations

Journal ArticleDOI
19 Dec 2013-Cell
TL;DR: A gut-microbiome-brain connection in a mouse model of ASD is supported and a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders is identified.

2,507 citations

Journal ArticleDOI
TL;DR: Recent technological and intellectual advances that have changed thinking about five questions about how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; and how is homeostasis maintained between animals and their symbionts are highlighted.
Abstract: In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.

2,103 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Abstract: This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.

9,057 citations

Journal ArticleDOI
Curtis Huttenhower1, Curtis Huttenhower2, Dirk Gevers2, Rob Knight3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.

8,410 citations

Journal Article
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Abstract: Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

6,350 citations

Journal ArticleDOI
17 Oct 2007-Nature
TL;DR: A strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease.
Abstract: A strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease.

4,730 citations