scispace - formally typeset
Search or ask a question
Author

Sarnjeet S. Dhesi

Bio: Sarnjeet S. Dhesi is an academic researcher from Diamond Light Source (United Kingdom). The author has contributed to research in topics: Spintronics & Ferromagnetism. The author has an hindex of 7, co-authored 17 publications receiving 171 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the current-driven motion of skyrmions in an ultrathin Pt/Co/MgO model system was investigated and it was shown that skyrms with diameters in the 100 nm range can move at speeds up to 100 m.s− 1−1−1^{-1}.
Abstract: Magnetic skyrmions are chiral spin textures which hold great promise as nanoscale information carriers. Their recent observation at room temperature and their fast current-induced manipulation in multiple repetitions of heavy metal/ferromagnetic stacks have lifted an important bottleneck towards the practical realisation of skyrmion-based devices. However, the complex spin textures and large power dissipation in these multilayers limit their practical implementation as well as the fundamental understanding of the skyrmion dynamics. Here, we report on the current-driven motion of skyrmions in an ultrathin Pt/Co/MgO model system. We find that skyrmions with diameters in the 100 nm range can move at speeds up to 100 m.s−1−1^{-1}. Our experiments also reveal that the skyrmion Hall effect is markedly drive-dependent. These observations are well substantiated both by a simple analytical model and micromagnetic simulations, which highlight the important role of pinning in the skyrmion dynamics.

123 citations

Journal ArticleDOI
TL;DR: Current-induced switching in a polycrystalline PtMn/Pt metallic heterostructure is demonstrated, revealing reversible switching of the thermally-stable antiferromagnetic Néel vector by spin-orbit torques.
Abstract: The ability to represent information using an antiferromagnetic material is attractive for future antiferromagnetic spintronic devices. Previous studies have focussed on the utilization of antiferromagnetic materials with biaxial magnetic anisotropy for electrical manipulation. A practical realization of these antiferromagnetic devices is limited by the requirement of material-specific constraints. Here, we demonstrate current-induced switching in a polycrystalline PtMn/Pt metallic heterostructure. A comparison of electrical transport measurements in PtMn with and without the Pt layer, corroborated by x-ray imaging, reveals reversible switching of the thermally-stable antiferromagnetic Neel vector by spin-orbit torques. The presented results demonstrate the potential of polycrystalline metals for antiferromagnetic spintronics. Antiferromagnets (AFMs) are prospective for future spintronic devices, owing to their speed and insensitivity to perturbations. Using a combination of electronic and magnetic dichroism measurements, the authors demonstrate reversible current-induced switching of the Neel vector in AFM PtMn.

42 citations

Journal ArticleDOI
TL;DR: Good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La 0.7 Sr 0.3 MnO 3 and an electroactive substrate of ferroelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 -0.32PbTiO 3 is demonstrated.
Abstract: Epitaxial films may be released from growth substrates and transferred to structurally and chemically incompatible substrates, but epitaxial films of transition metal perovskite oxides have not been transferred to electroactive substrates for voltage control of their myriad functional properties. Here we demonstrate good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La0.7Sr0.3MnO3 and an electroactive substrate of ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 in a different crystallographic orientation. Our strain-mediated magnetoelectric coupling compares well with respect to epitaxial heterostructures, where the epitaxy responsible for strong coupling can degrade film magnetization via strain and dislocations. Moreover, the electrical switching of magnetic anisotropy is repeatable and non-volatile. High-resolution magnetic vector maps reveal that micromagnetic behaviour is governed by electrically controlled strain and cracks in the film. Our demonstration should inspire others to control the physical/chemical properties in strain-released epitaxial oxide films by using electroactive substrates to impart strain via non-epitaxial interfaces. Key properties of transition metal perovskite oxides are degraded after epitaxial growth on ferroelectric substrates due to lattice-mismatch strain. Here, the authors use epitaxial lift-off and transfer to overcome this problem and demonstrate electric field control of a bulk-like magnetization.

38 citations

Journal ArticleDOI
TL;DR: In this article, the current-driven motion of Neel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer was investigated.
Abstract: Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray-field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of Neel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m/s and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported tunable emergent behaviors observed in domain wall (DW) populations of arrays of interconnected magnetic ring-shaped nanowires under an applied rotating magnetic field.
Abstract: Emergent behaviors occur when simple interactions between a system's constituent elements produce properties that the individual elements do not exhibit in isolation This article reports tunable emergent behaviors observed in domain wall (DW) populations of arrays of interconnected magnetic ring‐shaped nanowires under an applied rotating magnetic field DWs interact stochastically at ring junctions to create mechanisms of DW population loss and gain These combine to give a dynamic, field‐dependent equilibrium DW population that is a robust and emergent property of the array, despite highly varied local magnetic configurations The magnetic ring arrays’ properties (eg, non‐linear behavior, “fading memory” to changes in field, fabrication repeatability, and scalability) suggest they are an interesting candidate system for realizing reservoir computing (RC), a form of neuromorphic computing, in hardware By way of example, simulations of ring arrays performing RC approaches 100% success in classifying spoken digits for single speakers

28 citations


Cited by
More filters
Journal Article
TL;DR: Electrical writing is combined in solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.
Abstract: Manipulating a stubborn magnet Spintronics is an alternative to conventional electronics, based on using the electron's spin rather than its charge. Spintronic devices, such as magnetic memory, have traditionally used ferromagnetic materials to encode the 1's and 0's of the binary code. A weakness of this approach—that strong magnetic fields can erase the encoded information—could be avoided by using antiferromagnets instead of ferromagnets. But manipulating the magnetic ordering of antiferromagnets is tricky. Now, Wadley et al. have found a way (see the Perspective by Marrows). Running currents along specific directions in the thin films of the antiferromagnetic compound CuMnAs reoriented the magnetic domains in the material. Science, this issue p. 587; see also p. 558 Transport and optical measurements are used to demonstrate the switching of domains in the antiferromagnetic compound CuMnAs. [Also see Perspective by Marrows] Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

756 citations

Journal Article
TL;DR: Ferroelectricity in BaTiO3 crystals is used to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature, correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude.
Abstract: Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field e ects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

371 citations

Journal ArticleDOI
24 Jan 2020
TL;DR: In this paper, the authors studied the skyrmion Hall angle as a function of temperature and drive amplitude in ferromagnetic multilayers and provided a complete description of the SkHA in the full range of drive strengths.
Abstract: Magnetic skyrmions are topologically stabilized nanoscale spin structures that could be of use in the development of future spintronic devices. When a skyrmion is driven by an electric current it propagates at an angle relative to the flow of current—known as the skyrmion Hall angle (SkHA)—that is a function of the drive current. This drive dependence, as well as thermal effects due to Joule heating, could be used to tailor skyrmion trajectories, but are not well understood. Here we report a study of skyrmion dynamics as a function of temperature and drive amplitude. We find that the skyrmion velocity depends strongly on temperature, while the SkHA does not and instead evolves differently in the low- and high-drive regimes. In particular, the maximum skyrmion velocity in ferromagnetic devices is limited by a mechanism based on skyrmion surface tension and deformation (where the skyrmion transitions into a stripe). Our mechanism provides a complete description of the SkHA in ferromagnetic multilayers across the full range of drive strengths, illustrating that skyrmion trajectories can be engineered for device applications. An analysis of skyrmion dynamics at different temperatures and electric drive currents is used to develop a complete description of the skyrmion Hall angle in ferromagnetic multilayers from the creep to the flow regime and illustrates that skyrmion trajectories can be engineered for device applications.

106 citations

Journal ArticleDOI
TL;DR: Magnonics addresses the physical properties of spin waves and utilizes them for data processing as mentioned in this paper , and many proof-of-concept prototypes have already been realized in laboratories, such as the one presented in this article.
Abstract: Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors, which covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with the Boolean digital data, unconventional approaches, such as neuromorphic computing, and the progress toward magnon-based quantum computing. This article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors created and imaged in real space magnetic skyrmion bundles, that is, multi-Q three-dimensional spin textures, and their current-driven dynamics are studied.
Abstract: Topological charge Q classifies non-trivial spin textures and determines many of their characteristics. Most abundant are topological textures with |Q| ≤ 1, such as (anti)skyrmions, (anti)merons or (anti)vortices. In this study we created and imaged in real space magnetic skyrmion bundles, that is, multi-Q three-dimensional skyrmionic textures. These textures consist of a circular spin spiral that ties together a discrete number of skyrmion tubes. We observed skyrmion bundles with integer Q values up to 55. We show here that electric currents drive the collective motion of these particle-like textures similar to skyrmions. Bundles with Q ≠ 0 exhibit a skyrmion Hall effect with a Hall angle of ~62°, whereas Q = 0 bundles, the so-called skyrmioniums, propagate collinearly with respect to the current flow, that is, with a skyrmion Hall angle of ~0°. The experimental observation of multi-Q spin textures adds another member to the family of magnetic topological textures, which may serve in future spintronic devices. Non-trivial topological magnetic textures, such as skyrmions, merons or vortices, possess topological charges Q with absolute values smaller or equal to one. Now, skyrmion bundles, multi-Q three-dimensional skyrmionic textures, are observed and their current-driven dynamics are studied.

73 citations