scispace - formally typeset
Search or ask a question
Author

Sarnjeet S. Dhesi

Bio: Sarnjeet S. Dhesi is an academic researcher from European Synchrotron Radiation Facility. The author has contributed to research in topics: Magnetic moment & Magnetic circular dichroism. The author has an hindex of 39, co-authored 195 publications receiving 7216 citations. Previous affiliations of Sarnjeet S. Dhesi include Boston University & University of Liverpool.


Papers
More filters
Journal ArticleDOI
05 Feb 2016-Science
TL;DR: In this paper, the authors demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter.
Abstract: Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

1,008 citations

Journal ArticleDOI
16 May 2003-Science
TL;DR: The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface and the results confirm theoretical predictions and are of fundamental value to understanding how magnetic an isotropy develops in finite-sized magnetic particles.
Abstract: The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface. Single cobalt atoms deposited onto platinum (111) are found to have a magnetic anisotropy energy of 9 millielectron volts per atom arising from the combination of unquenched orbital moments (1.1 Bohr magnetons) and strong spin-orbit coupling induced by the platinum substrate. By assembling cobalt nanoparticles containing up to 40 atoms, the magnetic anisotropy energy is further shown to be dependent on single-atom coordination changes. These results confirm theoretical predictions and are of fundamental value to understanding how magnetic anisotropy develops in finite-sized magnetic particles.

887 citations

Journal ArticleDOI
TL;DR: In this article, a microwave plasma enhanced chemical vapor deposition strategy was used for the efficient synthesis of multilayer graphene nanoflake films (MGNFs) on Si substrates.
Abstract: We report a novel microwave plasma enhanced chemical vapor deposition strategy for the efficient synthesis of multilayer graphene nanoflake films (MGNFs) on Si substrates The constituent graphene nanoflakes have a highly graphitized knife-edge structure with a 2-3 nm thick sharp edge and show a preferred vertical orientation with respect to the Si substrate as established by near-edge X-ray absorption fine structure spectroscopy The growth rate is approximately 16 mu m min(-1), which is 10 times faster than the previously reported best value The MGNFs are shown to demonstrate fast electron-transfer (ET) kinetics for the Fe(CN)(6)(3-/4-) redox system and excellent electrocatalytic activity for simultaneously determining dopamine (DA), ascorbic acid (AA) and uric acid (UA) Their biosensing DA performance in the presence of common interfering agents AA and UA is superior to other bare solid-state electrodes and is comparable only to that of edge plane pyrolytic graphite Our work here, establishes that the abundance of graphitic edge planes/defects are essentially responsible for the fast ET kinetics, active electrocatalytic and biosensing properties This novel edge-plane-based electrochemical platform with the high surface area and electrocatalytic activity offers great promise for creating a revolutionary new class of nanostructured electrodes for biosensing, biofuel cells and energy-conversion applications

747 citations

Journal ArticleDOI
TL;DR: DAWN is a generic data analysis software platform developed for use at synchrotron beamlines for data visualization and analysis that is suitable for use in a range of scientific and engineering applications.
Abstract: Synchrotron light source facilities worldwide generate terabytes of data in numerous incompatible data formats from a wide range of experiment types. The Data Analysis WorkbeNch (DAWN) was developed to address the challenge of providing a single visualization and analysis platform for data from any synchrotron experiment (including single-crystal and powder diffraction, tomography and spectroscopy), whilst also being sufficiently extensible for new specific use case analysis environments to be incorporated (e.g. ARPES, PEEM). In this work, the history and current state of DAWN are presented, with two case studies to demonstrate specific functionality. The first is an example of a data processing and reduction problem using the generic tools, whilst the second shows how these tools can be targeted to a specific scientific area.

353 citations

Journal ArticleDOI
TL;DR: This work creates giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La( 0.7)Ca(0.3)MnO(3) using strain-mediated feedback from BaTiO( 3) substrates near a first-order structural phase transition.
Abstract: The thermodynamic properties of magnetocaloric materials show significant promise for energy-efficient cooling applications. The demonstration that large and reversible magnetocaloric effects can be created by means of strain suggests a new approach for inducing them in other magnetic materials.

199 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
Abstract: Every few years, a new material with unique properties emerges and fascinates the scientific community, typical recent examples being high-temperature superconductors and carbon nanotubes. Graphene is the latest sensation with unusual properties, such as half-integer quantum Hall effect and ballistic electron transport. This two-dimensional material which is the parent of all graphitic carbon forms is strictly expected to comprise a single layer, but there is considerable interest in investigating two-layer and few-layer graphenes as well. Synthesis and characterization of graphenes pose challenges, but there has been considerable progress in the last year or so. Herein, we present the status of graphene research which includes aspects related to synthesis, characterization, structure, and properties.

3,513 citations

Journal ArticleDOI
TL;DR: Graphene has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production).
Abstract: Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphenebased enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

2,866 citations

Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Journal ArticleDOI
06 Oct 2010-ACS Nano
TL;DR: It was found that the cell membrane damage of the bacteria caused by direct contact of theacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation.
Abstract: Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an outer membrane were more resistant to the cell membrane damage caused by the nanowalls than the Gram-positive Staphylococcus aureus lacking the outer membrane. Moreover, the graphene oxide nanowalls reduced by hydrazine were more toxic to the bacteria than the unreduced graphene oxide nanowalls. The better antibacteri...

2,148 citations