scispace - formally typeset
Search or ask a question
Author

Sarp Satir

Bio: Sarp Satir is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Capacitive micromachined ultrasonic transducers & Transducer. The author has an hindex of 11, co-authored 29 publications receiving 429 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 1.4-mm-diameter dual-ring transducer array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process is presented.
Abstract: Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

146 citations

Journal ArticleDOI
TL;DR: Successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry and the CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method.
Abstract: One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.

77 citations

Journal ArticleDOI
TL;DR: Harmony generation in CMUTs with a time-domain model is analyzed and it is shown that for subharmonic ac excitation, although resistive and capacitive impedances result in a trade-off between input voltage and harmonic distortion for a desired pressure output, harmonic generation can be suppressed while increasing the Pa/V transmit sensitivity for proper series inductance and resistance feedback.
Abstract: The nonlinear relationship between the electrical input signal and electrostatic force acting on the capacitive micromachined ultrasonic transducer (CMUT) membrane limits its harmonic imaging performance. Several input shaping methods were proposed to compensate for the nonlinearity originating from the electrostatic force's dependence on the square of the applied voltage. Here, we analyze harmonic generation in CMUTs with a time-domain model. The model explains the basis of the input shaping methods and suggests that the nonlinearity resulting from gap dependence of the electrostatic force is also significant. It also suggests that the harmonic distortion in the output pressure can be eliminated by subharmonic ac-only excitation of the CMUT in addition to scaling the input voltage with the instantaneous gap. This gap feedback configuration can be approximated by the simple addition of a series impedance to the CMUT capacitance. We analyze several types of series impedance feedback topologies for gap feedback linearization. We show that for subharmonic ac excitation, although resistive and capacitive impedances result in a trade-off between input voltage and harmonic distortion for a desired pressure output, harmonic generation can be suppressed while increasing the Pa/V transmit sensitivity for proper series inductance and resistance feedback. We experimentally demonstrate the feedback method by reducing harmonic generation by 10 dB for the same output pressure at the fundamental frequency by using a simple series resistor feedback with a CMUT operating at a center frequency of 3 MHz. The proposed methods also allow for utilization of the full CMUT gap for transmit operation and, hence, should be useful in high-intensity ultrasonic applications in addition to harmonic imaging.

48 citations

Journal ArticleDOI
TL;DR: A large-signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response.
Abstract: A large-signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For modeling of linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using commercial software. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array. The force-to-array-displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the time-domain transmitted pressure can be simulated for different large drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high- and low-aspect-ratio membranes as well as mass-loaded membranes. The overall software model is verified by comparison to transient 3-D finite element analysis and experimental results for different large drive signals, and an example for a phased array simulation is given.

38 citations

Proceedings ArticleDOI
01 Oct 2010
TL;DR: In this paper, a test setup capable of real-time image data collection using dual-ring CMUT-on-CMOS arrays was presented, using an FPGA to control Tx/Rx element selection and data collection functions.
Abstract: The capability to monolithically integrate CMUTs with underlying front-end electronics is promising for forward-looking (FL) imaging catheters with improved SNR and smaller size We previously demonstrated feasibility of CMUT-on-CMOS arrays for FL imaging and obtained pulse-echo results from individual elements Here we describe recent improvements in the fabrication process and initial results from a test setup capable of real-time image data collection using CMUT-on-CMOS arrays Dual-ring CMUT arrays were fabricated on silicon wafers with 035 µm CMOS front-end electronics processed at a commercial foundry The critical changes made in the fabrication process involved in-house polishing followed by a chemical stripping of the aluminum oxide slurry We also added 02 µm of silicon nitride before CMUT to CMOS interconnect via etching We made these modifications to improve surface quality, alleviating wirebonding stiction issues The real-time imaging test setup uses an FPGA to control Tx/Rx element selection and data collection functions The Tx electronics are capable of generating high voltage, broadband, bipolar pulses up to 100V in amplitude The 4 Rx channels coming out of the CMUT-on-CMOS chip are simultaneously digitized using a 14 bit 250 MS/s digitizer 12 MHz dual-ring CMUT-on-CMOS arrays were used for real-time imaging of various targets The results show that these arrays, coupled with an FPGA controlled data acquisition system, can produce true volumetric images in front of the array in real time

18 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: Assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations, and alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio are discussed.
Abstract: Cardiovascular diseases are major contributors to global deaths and disability-adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti-inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc

362 citations

Journal ArticleDOI
TL;DR: This state-of-the-art review assesses the current literature of mHealth and aims to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation.
Abstract: The convergence of science and technology in our dynamic digital era has resulted in the development of innovative digital health devices that allow easy and accurate characterization in health and disease. Technological advancements and the miniaturization of diagnostic instruments to modern smartphone-connected and mobile health (mHealth) devices such as the iECG, handheld ultrasound, and lab-on-a-chip technologies have led to increasing enthusiasm for patient care with promises to decrease healthcare costs and to improve outcomes. This ‘hype’ for mHealth has recently intersected with the ‘real world’ and is providing important insights into how patients and practitioners are utilizing digital health technologies. It is also raising important questions regarding the evidence supporting widespread device use. In this state-of-the-art review, we assess the current literature of mHealth and aim to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation. We also outline new strategies for generation and analysis of mHealth data at the individual and population-based levels.

282 citations

Journal ArticleDOI
03 Apr 2015-Sensors
TL;DR: An overview of the current development status of piezoelectric micromachined ultrasound transducers and a discussion of their suitability for miniaturized and integrated devices are presented.
Abstract: Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

261 citations

Journal ArticleDOI
Javier Egea, Isabel Fabregat1, Yves Frapart2, Pietro Ghezzi3  +148 moreInstitutions (57)
TL;DR: The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks and EU-ROS represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine.
Abstract: The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

242 citations