scispace - formally typeset
Search or ask a question
Author

Sary Otero-Tapia

Bio: Sary Otero-Tapia is an academic researcher. The author has contributed to research in topics: Low-energy electron diffraction & Dissociation (chemistry). The author has an hindex of 1, co-authored 1 publications receiving 221 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the chemistry of methanol was explored on the vacuum annealed TiO2(110) surface, with and without the presence of coadsorbed water and oxygen, using temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), static secondary ion mass spectrometry (SSIMS) and low energy electron diffraction (LEED).
Abstract: The chemistry of methanol was explored on the vacuum annealed TiO2(110) surface, with and without the presence of coadsorbed water and oxygen, using temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), static secondary ion mass spectrometry (SSIMS) and low energy electron diffraction (LEED). The vacuum annealed TiO2(110) surface possessed about 8% oxygen vacancy sites, as determined with H2O TPD. Although evidence is presented for CH3OH dissociation to methoxy groups on the vacuum annealed TiO2(110) surface using SSIMS and HREELS, particularly at vacancy sites, the majority of the adlayer was molecularly adsorbed, evolving in TPD at 295 K. Although no evidence of irreversible decomposition was found in the TPD, dissociative CH3OH adsorption at 135 K on the vacuum annealed TiO2(110) surface led to recombinative desorption states at 350 and 480 K corresponding to methoxys adsorbed at non-vacancy and vacancy sites, respectively. Coadsorbed water had little or no influence on the chemistry of CH3OH on the vacuum annealed TiO2(110) surface, however new channels of chemistry were observed when CH3OH was adsorbed on the surface after O2 adsorption at various temperatures. In particular, O2 exposure at 300 K resulted in O adatoms (via dissociation at vacancies) that led to increased levels of CH3O–H bond cleavage. The higher surface coverage of methoxy then resulted in a disproportionation reaction to form CH3OH and H2CO above 600 K. In contrast, low temperature exposure of the vacuum annealed TiO2(110) surface to O2 resulted in low temperature state of O2 (presumably an O2- species) that oxidized CH3OH to H2CO by C–H bond cleavage. These results provide incentive to consider alternative thermal and photochemical oxidation mechanisms that involve the interaction of organics and oxygen at surface defect sites.

236 citations


Cited by
More filters
Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: A review of the fundamental interactions of water with solid surfaces can be found in this paper, where the authors assimilated the results of the TM review with those covered by the authors to provide a current picture of water interactions on solid surfaces, such as how water adsorbs, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated and how do coadsorbates influence these properties of water.

2,022 citations

Journal ArticleDOI
TL;DR: The field of surface science provides a unique approach to understand bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis as mentioned in this paper, including photon absorption, charge transport and trapping, electron transfer dynamics, adsorbed state, mechanisms, poisons and promoters, and phase and form.

1,768 citations

Journal ArticleDOI
TL;DR: Details of the photochemistry of three important molecules (oxygen, water, methanol) on the model TiO2 surfaces are presented, in an attempt to unravel the relationship between charge/energy transfer and bond breaking/forming inTiO2 photocatalysis.
Abstract: Photocatalysis has been widely applied in various areas, such as solar cells, water splitting, and pollutant degradation. Therefore, the photochemical mechanisms and basic principles of photocatalysis, especially TiO2 photocatalysis, have been extensively investigated by various surface science methods in the last decade, aiming to provide important information for TiO2 photocatalysis under real environmental conditions. Recent progress that provides fundamental insights into TiO2 photocatalysis at a molecular level is highlighted. Insights into the structures of TiO2 and the basic principles of TiO2 photocatalysis are discussed first, which provides the basic concepts of TiO2 photocatalysis. Following this, details of the photochemistry of three important molecules (oxygen, water, methanol) on the model TiO2 surfaces are presented, in an attempt to unravel the relationship between charge/energy transfer and bond breaking/forming in TiO2 photocatalysis. Lastly, challenges and opportunities of the mechanistic studies of TiO2 photocatalysis at the molecular level are discussed briefly, as well as possible photocatalysis models.

832 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic activity of non metal doped titania for a wide variety of pollutants degradation under UV/visible light, with special emphasis on nitrogen doped TiO 2.
Abstract: The multifunctional and advanced semiconductor titania with superior physicochemical and opto-electronic properties is extensively investigated in wastewater purification mainly due to its non-toxicity, favorable band edge positions, water insolubility, multifaceted electronic properties, surface acid–base properties, super hydrophilicity and so on. However, large band gap and massive photogenerated charge carrier recombination hinders its wide application under natural solar light. Thus, altering the surface-bulk structure of titania is a major goal in the area of both materials and environmental chemistry for its better applications. The substitution of p block elements (B, C, N, F, S, P, and I) either at Ti 4+ and O 2− sites is a promising approach to overcome the aforementioned drawbacks. This review focuses on the photocatalytic activity of non metal doped titania for a wide variety of pollutants degradation under UV/visible light, with special emphasis on nitrogen doped TiO 2 . Further improvement in photoactivity of N–TiO 2 is achieved via depositing with noble metals, co-doping with foreign ions, sensitization, surface modifications and heterostructuring with other semiconductors. The mechanism governing the photocatalytic reactions is discussed in the light of charge carrier generation–separation–transfer–recombination dynamics together with pollutant adsorption and their reactions with reactive oxygenated species in liquid or gaseous regime. We are positive that this review article will further stimulate our research interest on this intriguing hot topic.

510 citations