scispace - formally typeset
Search or ask a question
Author

Sascha Kempf

Other affiliations: University of Jena, Max Planck Society, Baylor University  ...read more
Bio: Sascha Kempf is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Cosmic dust & Enceladus. The author has an hindex of 42, co-authored 182 publications receiving 6015 citations. Previous affiliations of Sascha Kempf include University of Jena & Max Planck Society.


Papers
More filters
Journal ArticleDOI
25 Jun 2009-Nature
TL;DR: The identification of a population of E-ring grains that are rich in sodium salts, which can arise only if the plumes originate from liquid water, and the abundance of various salt components in these particles exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core.
Abstract: Images from the Cassini spacecraft showed erupting plumes of water vapour and ice particles on Saturn's moon Enceladus, prompting speculation a subsurface ocean might be acting as a source of liquid water. Two groups this week report evidence relevant to the search for this subsurface ocean. The results, at first sight contradictory, leave the ocean a possibility, though still a hypothetical one. Postberg et al. used the Cassini Cosmic Dust Analyser to determine the chemical composition of ice grains in Saturn's E-ring, which consists largely of material from Enceladus. They find a population of E-ring grains rich in sodium salts, which should be possible only if the plumes originate from liquid water. Schneider et al. used Earth-based spectroscopic telescopes to search for sodium emission in the gas plumes erupting from Enceladus and found none. This is inconsistent with a direct supply from a salty ocean and suggests alternative eruption sources such as a deep ocean, a freshwater reservoir or ice. Or if there is a salty reservoir of water, some process not yet determined must be preventing the sodium from escaping into space. Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole, raising the possibility of a subsurface ocean. Minor organic or siliceous components, identified in many ice grains, could be evidence of interaction between Enceladus' rocky core and liquid water; however it has been unclear whether the water is still present today or if it has frozen. Now, the identification of a population of E-ring grains that are rich in sodium salts suggests that the plumes originate from liquid water. Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole1,2,3,4,5, suggesting the possibility of a subsurface ocean5,6,7. These plume particles are the dominant source of Saturn’s E ring7,8. A previous in situ analysis9 of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus’ rocky core and liquid water9,10. It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (∼0.5–2% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core11. The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra12 is in good agreement with our results. In the E ring the upper limit for spectroscopy12 is insufficiently sensitive to detect the concentrations we found.

473 citations

Journal ArticleDOI
30 Jun 2011-Nature
TL;DR: Whereas previous Cassini observations were compatible with a variety of plume formation mechanisms, these data eliminate or severely constrain non-liquid models and strongly imply that a salt-water reservoir with a large evaporating surface provides nearly all of the matter in the plume.
Abstract: Saturn's icy moon Enceladus is emitting a plume of water vapour and ice particles from warm fractures near its south pole known as tiger stripes. This plume material is thought to originate either from subsurface liquids or through the decomposition of ice. Postberg et al. report the first measurements of the compositions of freshly ejected particles, carried out by Cassini's dust detector during plume crossings. Salt-rich ice particles are found to dominate the total mass flux of ejected solids (>99%), which suggests that a salt-water reservoir with a large evaporating surface provides nearly all of the matter in the plume. The discovery of a plume of water vapour and ice particles emerging from warm fractures (‘tiger stripes’) in Saturn's small, icy moon Enceladus1,2,3,4,5,6 raised the question of whether the plume emerges from a subsurface liquid source6,7,8 or from the decomposition of ice9,10,11,12. Previous compositional analyses of particles injected by the plume into Saturn's diffuse E ring have already indicated the presence of liquid water8, but the mechanisms driving the plume emission are still debated13. Here we report an analysis of the composition of freshly ejected particles close to the sources. Salt-rich ice particles are found to dominate the total mass flux of ejected solids (more than 99 per cent) but they are depleted in the population escaping into Saturn's E ring. Ice grains containing organic compounds are found to be more abundant in dense parts of the plume. Whereas previous Cassini observations were compatible with a variety of plume formation mechanisms, these data eliminate or severely constrain non-liquid models and strongly imply that a salt-water reservoir with a large evaporating surface7,8 provides nearly all of the matter in the plume.

410 citations

Journal ArticleDOI
12 Mar 2015-Nature
TL;DR: Analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydroThermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.
Abstract: Analysis of silicon-rich, nanometre-sized dust particles near Saturn shows them to consist of silica, which was initially embedded in icy grains emitted from Enceladus’ subsurface waters and released by sputter erosion in Saturn’s E ring; their properties indicate their ongoing formation and transport by high-temperature hydrothermal reactions from the ocean floor and up into the plume of Enceladus. Hsiang-Wen Hsu et al. have analysed the silicon-rich, nanometre-sized dust stream particles in the Saturnian system using the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft. With the help of experiments and modelling, the particles are interpreted as silica grains that were initially embedded in the icy plume emitted from subsurface waters on Enceladus and released by sputter erosion in Saturn's E ring. Their properties indicate their formation and transport by high-temperature hydrothermal reactions from the ocean floor and up into the plume of Enceladus. Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock1,2. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick3. These findings imply rock–water interactions in regions surrounding the core of Enceladus. The resulting chemical ‘footprints’ are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft4. Here we report an analysis of silicon-rich, nanometre-sized dust particles5,6,7,8 (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus’ subsurface waters and released by sputter erosion in Saturn’s E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

394 citations

Journal ArticleDOI
10 Mar 2006-Science
TL;DR: During Cassini's close flyby of Enceladus on 14 July 2005, the High Rate Detector of the Cosmic Dust Analyzer registered micron-sized dust particles enveloping this satellite; this asymmetric signature is consistent with a locally enhanced dust production in the south polar region of Encesladus.
Abstract: During Cassini's close flyby of Enceladus on 14 July 2005, the High Rate Detector of the Cosmic Dust Analyzer registered micron-sized dust particles enveloping this satellite. The dust impact rate peaked about 1 minute before the closest approach of the spacecraft to the moon. This asymmetric signature is consistent with a locally enhanced dust production in the south polar region of Enceladus. Other Cassini experiments revealed evidence for geophysical activities near Enceladus' south pole: a high surface temperature and a release of water gas. Production or release of dust particles related to these processes may provide the dominant source of Saturn's E ring.

306 citations

Journal ArticleDOI
TL;DR: The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the jovian and satumian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings as mentioned in this paper.
Abstract: The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the jovian and satumian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.

279 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 2006-Science
TL;DR: Cassini has identified a geologically active province at the south pole of Saturn's moon Enceladus in images acquired by the Imaging Science Subsystem (ISS), this region is circumscribed by a chain of folded ridges and troughs at ∼55°S latitude as mentioned in this paper.
Abstract: Cassini has identified a geologically active province at the south pole of Saturn's moon Enceladus. In images acquired by the Imaging Science Subsystem (ISS), this region is circumscribed by a chain of folded ridges and troughs at ∼55°S latitude. The terrain southward of this boundary is distinguished by its albedo and color contrasts, elevated temperatures, extreme geologic youth, and narrow tectonic rifts that exhibit coarse-grained ice and coincide with the hottest temperatures measured in the region. Jets of fine icy particles that supply Saturn's E ring emanate from this province, carried aloft by water vapor probably venting from subsurface reservoirs of liquid water. The shape of Enceladus suggests a possible intense heating epoch in the past by capture into a 1:4 secondary spin/orbit resonance.

1,005 citations

Journal ArticleDOI
TL;DR: In this article, a review examines the experimental achievements and puts them into the context of the dust processes in protoplanetary disks, concluding that the formation of planetesimals starts with the growth of fractal dust aggregates, followed by compaction processes.
Abstract: The formation of planetesimals, the kilometer-sized planetary precursors, is still a puzzling process. Considerable progress has been made over the past years in the physical description of the first stages of planetesimal formation, owing to extensive laboratory work. This review examines the experimental achievements and puts them into the context of the dust processes in protoplanetary disks. It has become clear that planetesimal formation starts with the growth of fractal dust aggregates, followed by compaction processes. As the dust-aggregate sizes increase, the mean collision velocity also increases, leading to the stalling of the growth and possibly to fragmentation, once the dust aggregates have reached decimeter sizes. A multitude of hypotheses for the further growth have been proposed, such as very sticky materials, secondary collision processes, enhanced growth at the snow line, or cumulative dust effects with gravitational instability. We will also critically review these ideas.

892 citations

01 Jan 2006
TL;DR: The shape of Enceladus suggests a possible intense heating epoch in the past by capture into a 1:4 secondary spin/orbit resonance.

859 citations