scispace - formally typeset
Search or ask a question
Author

Saskia Wanders

Bio: Saskia Wanders is an academic researcher. The author has contributed to research in topics: Case-control study & Odds ratio. The author has an hindex of 1, co-authored 1 publications receiving 513 citations.

Papers
More filters
Journal Article
TL;DR: The risk for high versus low levels of CAs was similar in subjects heavily exposed to carcinogens and in those who had never, to their knowledge, been exposed to any major carcinogenic agent during their lifetime, supporting the idea that chromosome damage itself is involved in the pathway to cancer.
Abstract: An increased risk of cancer in healthy individuals with high levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes has been described in recent epidemiological studies. This association did not appear to be modified by sex, age, country, or time since CA test, whereas the role played by exposure to carcinogens is still uncertain because of the requisite information concerning occupation and lifestyle was lacking. We evaluated in the present study whether CAs predicted cancer because they were the result of past exposure to carcinogens or because they were an intermediate end point in the pathway leading to disease. A nested case-control study was performed on 93 incident cancer cases and 62 deceased cancer cases coming from two prospective cohort studies performed in Nordic countries (Denmark, Finland, Norway, and Sweden) and Italy. For each case, four controls matched by country, sex, year of birth, and year of CA test were randomly selected. Occupational exposure and smoking habit were assessed by a collaborative group of occupational hygienists. Logistic regression models indicated a statistically significant increase in risk for subjects with a high level of CAs compared to those with a low level in the Nordic cohort (odds ratio, 2.35; 95% confidence interval, 1.31-4.23) and in the Italian cohort (odds ratio, 2.66; 95% confidence interval, 1.26-5.62). These estimates were not affected by the inclusion of occupational exposure level and smoking habit in the regression model. The risk for high versus low levels of CAs was similar in subjects heavily exposed to carcinogens and in those who had never, to their knowledge, been exposed to any major carcinogenic agent during their lifetime, supporting the idea that chromosome damage itself is involved in the pathway to cancer. The results have important ramifications for the understanding of the role played by sporadic chromosome damage for the origin of neoplasia-associated CAs.

518 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preliminary evidence is provided that MN frequency in PBL is a predictive biomarker of cancer risk within a population of healthy subjects and in all national cohorts and for all major cancer sites.
Abstract: The frequency of micronuclei (MN) in peripheral blood lymphocytes (PBL) is extensively used as a biomarker of chromosomal damage and genome stability in human populations. Much theoretical evidence has been accumulated supporting the causal role of MN induction in cancer development, although prospective cohort studies are needed to validate MN as a cancer risk biomarker. A total of 6718 subjects from of 10 countries, screened in 20 laboratories for MN frequency between 1980 and 2002 in ad hoc studies or routine cytogenetic surveillance, were selected from the database of the HUman MicroNucleus (HUMN) international collaborative project and followed up for cancer incidence or mortality. To standardize for the inter-laboratory variability subjects were classified according to the percentiles of MN distribution within each laboratory as low, medium or high frequency. A significant increase of all cancers incidence was found for subjects in the groups with medium (RR = 1.84; 95% CI: 1.28-2.66) and high MN frequency (RR = 1.53; 1.04-2.25). The same groups also showed a decreased cancer-free survival, i.e. P = 0.001 and P = 0.025, respectively. This association was present in all national cohorts and for all major cancer sites, especially urogenital (RR = 2.80; 1.17-6.73) and gastro-intestinal cancers (RR = 1.74; 1.01-4.71). The results from the present study provide preliminary evidence that MN frequency in PBL is a predictive biomarker of cancer risk within a population of healthy subjects. The current wide-spread use of the MN assay provides a valuable opportunity to apply this assay in the planning and validation of cancer surveillance and prevention programs.

911 citations

Journal ArticleDOI
Julian Peto1
17 May 2001-Nature
TL;DR: The remarkable advances in cell and molecular biology over the past two decades have transformed the scope and methods of cancer epidemiology, and modern epidemiological studies often depend on genetic, biochemical or viral assays that had not been developed 20 years ago.
Abstract: By the early 1980s, epidemiologists had identified many important causes of cancer. They had also proposed the 'multi-stage' model of cancer, although none of the hypothesized events in human carcinogenesis had then been identified. The remarkable advances in cell and molecular biology over the past two decades have transformed the scope and methods of cancer epidemiology. There have been a few new discoveries based purely on traditional methods, and many long-suspected minor risks have been estimated more precisely. But modern epidemiological studies often depend on genetic, biochemical or viral assays that had not been developed 20 years ago.

637 citations

Journal ArticleDOI
TL;DR: Micronutrient deficiency may explain why the quarter of the population that eats the fewest fruits and vegetables has about double the cancer rate for most types of cancer when compared to the quarter with the highest intake.
Abstract: A deficiency of any of the micronutrients: folic acid, Vitamin B12, Vitamin B6, niacin, Vitamin C, Vitamin E, iron, or zinc, mimics radiation in damaging DNA by causing single- and double-strand breaks, oxidative lesions, or both. For example, the percentage of the US population that has a low intake ( 20%. A level of folate deficiency causing chromosome breaks was present in approximately 10% of the US population, and in a much higher percentage of the poor. Folate deficiency causes extensive incorporation of uracil into human DNA (4 million/cell), leading to chromosomal breaks. This mechanism is the likely cause of the increased colon cancer risk associated with low folate intake. Some evidence, and mechanistic considerations, suggest that Vitamin B12 (14% US elderly) and B6 (10% of US) deficiencies also cause high uracil and chromosome breaks. Micronutrient deficiency may explain, in good part, why the quarter of the population that eats the fewest fruits and vegetables (five portions a day is advised) has about double the cancer rate for most types of cancer when compared to the quarter with the highest intake. For example, 80% of American children and adolescents and 68% of adults do not eat five portions a day. Common micronutrient deficiencies are likely to damage DNA by the same mechanism as radiation and many chemicals, appear to be orders of magnitude more important, and should be compared for perspective. Remedying micronutrient deficiencies should lead to a major improvement in health and an increase in longevity at low cost.

528 citations

Journal ArticleDOI
TL;DR: The harmonization and standardization of the buccal MN assay will allow more reliable comparison of the data among human populations and laboratories, evaluation of the assay's performance, and consolidation of its world-wide use for biomonitoring of DNA damage.
Abstract: The micronucleus (MN) assay in exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. This overview has concluded that although MN assay in buccal cells has been used since the 1980s to demonstrate cytogenetic effects of environmental and occupational exposures, lifestyle factors, dietary deficiencies, and different diseases, important knowledge gaps remain about the characteristics of micronuclei and other nuclear abnormalities, the basic biology explaining the appearance of various cell types in buccal mucosa samples and effects of diverse staining procedures and scoring criteria in laboratories around the world. To address these uncertainties, the human micronucleus project (HUMN; see http://www.humn.org) has initiated a new international validation project for the buccal cell MN assay similar to that previously performed using human lymphocytes. Future research should explore sources of variability in the assay (e.g. between laboratories and scorers, as well as inter- and intra-individual differences in subjects), and resolve key technical issues, such as the method of buccal cell staining, optimal criteria for classification of normal and degenerated cells and for scoring micronuclei and other abnormalities. The harmonization and standardization of the buccal MN assay will allow more reliable comparison of the data among human populations and laboratories, evaluation of the assay's performance, and consolidation of its world-wide use for biomonitoring of DNA damage.

512 citations

Journal ArticleDOI
TL;DR: Dietary intakes above the current RDI may be particularly important in those with extreme defects in the absorption and metabolism of these Vitamins, for which ageing is a contributing factor.
Abstract: Folic acid plays a critical role in the prevention of chromosome breakage and hypomethylation of DNA. This activity is compromised when Vitamin B12 (B12) concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation and DNA hypomethylation. In vivo studies show that Vitamin B12 deficiency and elevated plasma homocysteine are significantly correlated with increased micronucleus formation. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is >227nmol/l. Intervention studies in humans show: (a) that DNA hypomethylation, chromosome breaks, uracil misincorporation and micronucleus formation are minimised when red cell folate concentration is >700nmol/l folate; and (b) micronucleus formation is minimised when plasma concentration of Vitamin B12 is >300pmol/l and plasma homocysteine is <7.5micromol/l. These concentrations are achievable at intake levels in excess of current RDIs i.e. more than 200-400microgram folic acid per day and more than 2microgram Vitamin B12 per day. A placebo-controlled study with a dose-response suggests that based on the micronucleus index in lymphocytes, an RDI level of 700microgram/day for folic acid and 7microgram/day for Vitamin B12 would be appropriate for genomic stability in young adults. Dietary intakes above the current RDI may be particularly important in those with extreme defects in the absorption and metabolism of these Vitamins, for which ageing is a contributing factor.

487 citations