scispace - formally typeset
Search or ask a question
Author

Sathyanarayana N. Gummadi

Bio: Sathyanarayana N. Gummadi is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Phospholipid scramblase & Caffeine. The author has an hindex of 25, co-authored 139 publications receiving 2332 citations. Previous affiliations of Sathyanarayana N. Gummadi include Indian Institutes of Technology & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: This short review highlights progress on purification and understanding the biochemical aspects of microbial pectinases.

305 citations

Journal ArticleDOI
TL;DR: The present review discusses the current understanding of PLSCR1 in relation to its trafficking, localization and signaling functions.

201 citations

Journal ArticleDOI
TL;DR: Development of a process involving an enzymatic (specific) degradation of caffeine to non-toxic compound is necessary to solve the problems of chemical extraction of caffeine in food products as well as treating the caffeine containing waste products.

127 citations

Journal ArticleDOI
TL;DR: Development of biodecaffeination techniques using these enzymes or using whole cells offers an attractive alternative to the present existing chemical and physical methods removal of caffeine, which are costly, toxic and non-specific to caffeine.
Abstract: Catabolism of caffeine (1,3,7-trimethylxanthine) in microorganisms commences via two possible mechanisms: demethylation and oxidation. Through the demethylation route, the major metabolite formed in fungi is theophylline (1,3-dimethylxanthine), whereas theobromine (3,7-dimethylxanthine) is the major metabolite in bacteria. In certain bacterial species, caffeine has also been oxidized directly to trimethyl uric acid in a single step. The conversion of caffeine to its metabolites is primarily brought about by N-demethylases (such as caffeine demethylase, theobromine demethylase and heteroxanthinedemethylase), caffeine oxidase and xanthine oxidase that are produced by several caffeine-degrading bacterial species such as Pseudomonas putida and species within the genera Alcaligenes, Rhodococcus and Klebsiella. Development of biodecaffeination techniques using these enzymes or using whole cells offers an attractive alternative to the present existing chemical and physical methods removal of caffeine, which are costly, toxic and non-specific to caffeine. This review mainly focuses on the biochemistry of microbial caffeine degradation, presenting recent advances and the potential biotechnological application of caffeine-degrading enzymes.

105 citations

Journal ArticleDOI
TL;DR: This review discusses the various conventional, nano-remediation, and bioremediation methods to keep Cr(VI) concentration in check and further discuss their efficiencies.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants as discussed by the authors, and they have a share of 25% in the global sales of food enzymes.

975 citations

Journal ArticleDOI
TL;DR: A summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation and a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.
Abstract: Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

937 citations

Journal ArticleDOI
TL;DR: Emerging knowledge of the actions of Ca(2+) upstream and downstream of Abeta provides opportunities to develop novel preventative and therapeutic interventions for AD.

795 citations

Journal ArticleDOI
TL;DR: The determinants and functional implications of the subcellular distribution and membrane topology of the most abundant negatively charged phospholipid in eukaryotic membranes are discussed.
Abstract: Phosphatidylserine (PS) is the most abundant negatively charged phospholipid in eukaryotic membranes. PS directs the binding of proteins that bear C2 or gamma-carboxyglutamic domains and contributes to the electrostatic association of polycationic ligands with cellular membranes. Rather than being evenly distributed, PS is found preferentially in the inner leaflet of the plasma membrane and in endocytic membranes. The loss of PS asymmetry is an early indicator of apoptosis and serves as a signal to initiate blood clotting. This review discusses the determinants and functional implications of the subcellular distribution and membrane topology of PS.

793 citations

Journal ArticleDOI
05 Mar 2010-Cell
TL;DR: How the endogenous components of dead cells activate the immune system through both extracellular and intracellular pathways is discussed.

769 citations