scispace - formally typeset
Search or ask a question
Author

Satish K. Garg

Bio: Satish K. Garg is an academic researcher from University of Colorado Denver. The author has contributed to research in topics: Diabetes mellitus & Type 1 diabetes. The author has an hindex of 63, co-authored 484 publications receiving 17359 citations. Previous affiliations of Satish K. Garg include University of Colorado Boulder & Mayo Clinic.


Papers
More filters
Journal ArticleDOI
TL;DR: This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations.
Abstract: Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations.

1,776 citations

Journal ArticleDOI
TL;DR: This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes.
Abstract: Measurement of glycated hemoglobin (HbA1c) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes.

1,173 citations

Journal ArticleDOI
TL;DR: Data from the T1D Exchange registry demonstrate that only a minority of adults and youth with type 1 diabetes in the United States achieve ADA goals for HbA1c, and racial differences were evident in use of pumps and CGM and Hb a1c levels.
Abstract: Objective To provide a snapshot of the profile of adults and youth with type 1 diabetes (T1D) in the United States and assessment of longitudinal changes in T1D management and clinical outcomes in the T1D Exchange registry. Research design and methods Data on diabetes management and outcomes from 22,697 registry participants (age 1-93 years) were collected between 2016 and 2018 and compared with data collected in 2010-2012 for 25,529 registry participants. Results Mean HbA1c in 2016-2018 increased from 65 mmol/mol at the age of 5 years to 78 mmol/mol between ages 15 and 18, with a decrease to 64 mmol/mol by age 28 and 58-63 mmol/mol beyond age 30. The American Diabetes Association (ADA) HbA1c goal of 10-fold in children Conclusions Data from the T1D Exchange registry demonstrate that only a minority of adults and youth with T1D in the United States achieve ADA goals for HbA1c.

1,082 citations

Journal ArticleDOI
TL;DR: This study showed that over a 3-month period the use of sensor-augmented insulin-pump therapy with the threshold-suspend feature reduced nocturnal hypoglycemia, without increasing glycated hemoglobin values.
Abstract: BackgroundThe threshold-suspend feature of sensor-augmented insulin pumps is designed to minimize the risk of hypoglycemia by interrupting insulin delivery at a preset sensor glucose value. We evaluated sensor-augmented insulin-pump therapy with and without the threshold-suspend feature in patients with nocturnal hypoglycemia. MethodsWe randomly assigned patients with type 1 diabetes and documented nocturnal hypoglycemia to receive sensor-augmented insulin-pump therapy with or without the threshold-suspend feature for 3 months. The primary safety outcome was the change in the glycated hemoglobin level. The primary efficacy outcome was the area under the curve (AUC) for nocturnal hypoglycemic events. Two-hour threshold-suspend events were analyzed with respect to subsequent sensor glucose values. ResultsA total of 247 patients were randomly assigned to receive sensor-augmented insulin-pump therapy with the threshold-suspend feature (threshold-suspend group, 121 patients) or standard sensor-augmented insuli...

541 citations

Journal ArticleDOI
TL;DR: It is demonstrated that availability of real-time, continuously measured glucose levels can significantly improve glycemic excursions by reducing exposure to hyperglycemia without increasing the risk of hypoglycemia, which may reduce long-term diabetes complications and their associated economic costs.
Abstract: RESEARCH DESIGN AND METHODS — A total of 91 insulin-requiring patients with type 1 (n 75) and type 2 (n 16) diabetes were enrolled in this multicenter randomized study. Subjects wore a transcutaneous, 3-day, continuous glucose-sensing system for three consecutive 72-h periods. Subjects were randomly assigned (1:1 ratio) to either a control group (continuous glucose data not provided) or a display group (continuous glucose data not provided during period 1 but displayed during periods 2 and 3). During periods 2 and 3, patients in the display group had real-time access to sensor glucose values, could review glucose trends over the preceding 1, 3, and 9 h, and were provided with high (200 mg/dl) and low (80 mg/dl) alerts and a low (55 mg/dl) alarm. Sensors were inserted by patients, and both groups used (or wore) the system during daily activities. Device accuracy was assessed by comparing continuous glucose values to paired self-monitoring of blood glucose (SMBG) meter readings. Clinical effectiveness was evaluated by analyzing between-group (control vs. display, periods 2 and 3) and within-group (display, period 1 vs. period 3) differences in time spent in high, low, and target (81–140 mg/dl) glucose zones. RESULTS — When prospective, real-time sensor values were compared with SMBG values, 95.4% of 6,767 paired glucose values fell within Clarke error grid A and B zones. Pearson’s correlation coefficient was 0.88, and mean and median absolute relative differences were 21.2 and 15.9%, respectively. No systematic bias was detected at any of the prespecified glucose levels (50, 80, 100, 150, and 200 mg/dl). When compared with control subjects, the display group spent 21% less time as hypoglycemic (55 mg/dl), 23% less time as hyperglycemic (240 mg/dl), and 26% more time in the target (81–140 mg/dl) glucose range (P 0.001 for each comparison). Nocturnal (10:00 P.M. to 6:00 A.M.) hypoglycemia, as assessed at two thresholds, was also reduced by 38% (55 mg/dl; P 0.001) and 33% (55– 80 mg/dl; P 0.001) in the display group compared with control subjects. CONCLUSIONS — We conclude that real-time continuous glucose monitoring for periods up to 72 h is accurate and safe in insulin-requiring subjects with type 1 and type 2 diabetes. This study demonstrates that availability of realtime, continuously measured glucose levels can significantly improve glycemic excursions by reducing exposure to hyperglycemia without increasing the risk of hypoglycemia, which may reduce long-term diabetes complications and their associated economic costs. Diabetes Care 29:44–50, 2006

479 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care.
Abstract: D iabetes mellitus is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. Specifically titled sections of the standards address children with diabetes, pregnant women, and people with prediabetes. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3. The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A large number of these interventions have been shown to be cost-effective (4). A grading system (Table 1), developed by the American Diabetes Association (ADA) andmodeled after existingmethods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. These standards of care are revised annually by the ADA’s multidisciplinary Professional Practice Committee, incorporating new evidence. For the current revision, committee members systematically searched Medline for human studies related to each subsection and published since 1 January 2010. Recommendations (bulleted at the beginning of each subsection and also listed in the “Executive Summary: Standards of Medical Care in Diabetesd2012”) were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at http:// professional.diabetes.org/CPR_Search. aspx. Subsequently, as is the case for all Position Statements, the standards of care were reviewed and approved by the ExecutiveCommittee of ADA’s Board ofDirectors, which includes health care professionals, scientists, and lay people. Feedback from the larger clinical community was valuable for the 2012 revision of the standards. Readers who wish to comment on the “Standards of Medical Care in Diabetesd2012” are invited to do so at http://professional.diabetes.org/ CPR_Search.aspx. Members of the Professional Practice Committee disclose all potential financial conflicts of interest with industry. These disclosures were discussed at the onset of the standards revisionmeeting. Members of the committee, their employer, and their disclosed conflicts of interest are listed in the “Professional PracticeCommitteeMembers” table (see pg. S109). The AmericanDiabetes Association funds development of the standards and all its position statements out of its general revenues and does not utilize industry support for these purposes.

4,266 citations

01 Jan 2009
TL;DR: Physicians should consider modification of immunosuppressive regimens to decrease the risk of PTD in high-risk transplant recipients and Randomized trials are needed to evaluate the use of oral glucose-lowering agents in transplant recipients.
Abstract: OBJECTIVE — To systematically review the incidence of posttransplantation diabetes (PTD), risk factors for its development, prognostic implications, and optimal management. RESEARCH DESIGN AND METHODS — We searched databases (MEDLINE, EMBASE, the Cochrane Library, and others) from inception to September 2000, reviewed bibliographies in reports retrieved, contacted transplantation experts, and reviewed specialty journals. Two reviewers independently determined report inclusion (original studies, in all languages, of PTD in adults with no history of diabetes before transplantation), assessed study methods, and extracted data using a standardized form. Meta-regression was used to explain between-study differences in incidence. RESULTS — Nineteen studies with 3,611 patients were included. The 12-month cumulative incidence of PTD is lower (10% in most studies) than it was 3 decades ago. The type of immunosuppression explained 74% of the variability in incidence (P 0.0004). Risk factors were patient age, nonwhite ethnicity, glucocorticoid treatment for rejection, and immunosuppression with high-dose cyclosporine and tacrolimus. PTD was associated with decreased graft and patient survival in earlier studies; later studies showed improved outcomes. Randomized trials of treatment regimens have not been conducted. CONCLUSIONS — Physicians should consider modification of immunosuppressive regimens to decrease the risk of PTD in high-risk transplant recipients. Randomized trials are needed to evaluate the use of oral glucose-lowering agents in transplant recipients, paying particular attention to interactions with immunosuppressive drugs. Diabetes Care 25:583–592, 2002

3,716 citations

Journal ArticleDOI
TL;DR: The cardiovascular safety profile of dapagliflozin, a selective inhibitor of sodium–glucose cotransporter 2 that promotes glucosuria in patients with type 2 diabetes, is undefined.
Abstract: Background The cardiovascular safety profile of dapagliflozin, a selective inhibitor of sodium–glucose cotransporter 2 that promotes glucosuria in patients with type 2 diabetes, is undefined. Methods We randomly assigned patients with type 2 diabetes who had or were at risk for atherosclerotic cardiovascular disease to receive either dapagliflozin or placebo. The primary safety outcome was a composite of major adverse cardiovascular events (MACE), defined as cardiovascular death, myocardial infarction, or ischemic stroke. The primary efficacy outcomes were MACE and a composite of cardiovascular death or hospitalization for heart failure. Secondary efficacy outcomes were a renal composite (≥40% decrease in estimated glomerular filtration rate to <60 ml per minute per 1.73 m2 of body-surface area, new end-stage renal disease, or death from renal or cardiovascular causes) and death from any cause. Results We evaluated 17,160 patients, including 10,186 without atherosclerotic cardiovascular disease, ...

3,430 citations

Journal ArticleDOI
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care.
Abstract: D iabetes is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3. The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was used to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. These standards of care are revised annually by the ADA multidisciplinary Professional Practice Committee, and new evidence is incorporated. Members of the Professional Practice Committee and their disclosed conflicts of interest are listed in the Introduction. Subsequently, as with all position statements, the standards of care are reviewed and approved by the Executive Committee of ADA’s Board of Directors.

3,405 citations