scispace - formally typeset
Search or ask a question
Author

Satish R. Kolhe

Bio: Satish R. Kolhe is an academic researcher from North Maharashtra University. The author has contributed to research in topics: Recommender system & Marathi. The author has an hindex of 10, co-authored 46 publications receiving 497 citations.

Papers
More filters
Journal ArticleDOI
01 Nov 2011
TL;DR: In this paper, the state of the art from 1970s of machine printed and handwritten Devanagari optical character recognition (OCR) is discussed in various sections of the paper.
Abstract: In India, more than 300 million people use Devanagari script for documentation. There has been a significant improvement in the research related to the recognition of printed as well as handwritten Devanagari text in the past few years. State of the art from 1970s of machine printed and handwritten Devanagari optical character recognition (OCR) is discussed in this paper. All feature-extraction techniques as well as training, classification and matching techniques useful for the recognition are discussed in various sections of the paper. An attempt is made to address the most important results reported so far and it is also tried to highlight the beneficial directions of the research till date. Moreover, the paper also contains a comprehensive bibliography of many selected papers appeared in reputed journals and conference proceedings as an aid for the researchers working in the field of Devanagari OCR.

159 citations

Journal ArticleDOI
TL;DR: The system design of an Intrusion detection system is presented to reduce false alarm rate and improve accuracy to detect intrusion.
Abstract: In today’s world, almost everybody is affluent with computers and network based technology is growing by leaps and bounds. So, network security has become very important, rather an inevitable part of computer system. An Intrusion Detection System (IDS) is designed to detect system attacks and classify system activities into normal and abnormal form. Machine learning techniques have been applied to intrusion detection systems which have an important role in detecting Intrusions. This paper reviews different machine approaches for Intrusion detection system. This paper also presents the system design of an Intrusion detection system to reduce false alarm rate and improve accuracy to detect intrusion.

64 citations

Journal ArticleDOI
TL;DR: An attempt is made to present the state of the art in automatic processing of handwritten cheque images and discusses the important results reported so far in preprocessing, extraction, recognition and verification of handwritten fields on bank cheques and highlights the positive directions of research till date.
Abstract: Bank cheques (checks) are still widely used all over the world for financial transactions. Huge volumes of handwritten bank cheques are processed manually every day in developing countries. In such a manual verification, user written information including date, signature, legal and courtesy amounts present on each cheque has to be visually verified. As many countries use cheque truncation systems (CTS) nowadays, much time, effort and money can be saved if this entire process of recognition, verification and data entry is done automatically using images of cheques. An attempt is made in this paper to present the state of the art in automatic processing of handwritten cheque images. It discusses the important results reported so far in preprocessing, extraction, recognition and verification of handwritten fields on bank cheques and highlights the positive directions of research till date. The paper has a comprehensive bibliography of many references as a support for researchers working in the field of automatic bank cheque processing. The paper also contains some information about the products available in the market for automatic cheque processing. To the best of our knowledge, there is no survey in the area of automatic cheque processing, and there is a need of such a survey to know the state of the art.

63 citations

Journal ArticleDOI
01 Jan 2009
TL;DR: A new approach of static handwritten signature verication based on Dynamic Time Warping (DTW) by using only ve genuine signatures for training is proposed in this paper and it is observed that the False Acceptance Rate (FAR) of the proposed system decreases as the number of genuine training samples increases.
Abstract: Static signature verication has a signicant use in establishing the authenticity of bank checks, insurance and legal documents based on the signatures they carry. As an individual signs only a few times on the forms for opening an account with any bank or for insurance related purposes, the number of genuine signature templates available in banking and insurance applications is limited, a new approach of static handwritten signature verication based on Dynamic Time Warping (DTW) by using only ve genuine signatures for training is proposed in this paper. Initially the genuine and test signatures belonging to an individual are normalized after calculating the aspect ratios of the genuine signatures. The horizontal and vertical projection features of a signature are extracted using discrete Radon transform and the two vectors are combined to form a combined projection feature vector. The feature vectors of two signatures are matched using DTW algorithm. The closed area formed by the matching path around the diagonal of the DTW-grid is computed and is multiplied with the dierence cost between the feature vectors. A threshold is calculated for each genuine sample during the training. The test signature is compared with each genuine sample and a matching score is calculated. A decision to accept or reject is made on the average of such scores. The entire experimentations were performed on a global signature database (GPDS-Signature Database) of 2106 signatures with 936 genuine signatures and 1170 skilled forgeries. To evaluate the performance, experiments were carried out with 4 to 5 genuine samples for training and with dierent ‘scores’. The proposed as well as the existing DTW-method were implemented and compared. It is observed that the proposed method is superior in terms of Equal Error Rate (EER) and Total Error Rate (TER) when 4 or 5 genuine signatures were used for training. Also it is observed that the False Acceptance Rate (FAR) of the proposed system decreases as the number of genuine training samples increases.

43 citations

Proceedings ArticleDOI
18 Sep 2011
TL;DR: A dataset containing 26,720 handwritten legal amount words written in Hindi and Marathi languages (Devanagari script) is presented in this paper along with a training-free technique to recognize such handwritten legal amounts present on Indian bank cheques.
Abstract: A dataset containing 26,720 handwritten legal amount words written in Hindi and Marathi languages (Devanagari script) is presented in this paper along with a training-free technique to recognize such handwritten legal amounts present on Indian bank cheques. The recognition of handwritten legal amount words in Hindi and Marathi languages is a challenging because of the similar size and shape of many words in the lexicon. Moreover, many words have same suffixes or prefixes. The recognition technique proposed is a combination of two approaches. The first approach is based on gradient, structural and cavity (GSC) features along with a binary vector matching (BVM) technique. The second approach is based on vertical projection profile (VPP) feature and dynamic time warping (DTW). A number of highly matched words in both the approaches are considered for the recognition step in the combined approach based on a ranking scheme. Syntactical knowledge related to the languages is also used to achieve higher reliability. To the best of our knowledge, this is the first work of its kind in recognizing handwritten legal amounts written in Hindi and Marathi. Researchers interested in the dataset can contact the authors to get it through a shared link.

35 citations


Cited by
More filters
01 Jan 2002

9,314 citations

01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Journal ArticleDOI
TL;DR: A new hybrid model can be used to estimate the intrusion scope threshold degree based on the network transaction data’s optimal features that were made available for training and revealed that the hybrid approach had a significant effect on the minimisation of the computational and time complexity involved when determining the feature association impact scale.

484 citations

Proceedings ArticleDOI
Jia-Xing Zhong1, Nannan Li1, Weijie Kong1, Shan Liu2, Thomas H. Li1, Ge Li1 
15 Jun 2019
TL;DR: A graph convolutional network is devised that propagates supervisory signals from high-confidence snippets to low-confidence ones and is capable of providing cleaned supervision for action classifiers.
Abstract: Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.

211 citations

Journal ArticleDOI
01 Nov 2012
TL;DR: This review presents an overview of recent research approaches on the topic of anomaly detection in automated surveillance, covering a wide range of domains, employing a vast array of techniques.
Abstract: As surveillance becomes ubiquitous, the amount of data to be processed grows along with the demand for manpower to interpret the data. A key goal of surveillance is to detect behaviors that can be considered anomalous. As a result, an extensive body of research in automated surveillance has been developed, often with the goal of automatic detection of anomalies. Research into anomaly detection in automated surveillance covers a wide range of domains, employing a vast array of techniques. This review presents an overview of recent research approaches on the topic of anomaly detection in automated surveillance. The reviewed studies are analyzed across five aspects: surveillance target, anomaly definitions and assumptions, types of sensors used and the feature extraction processes, learning methods, and modeling algorithms.

195 citations