scispace - formally typeset
Search or ask a question
Author

Satohiro Masuda

Bio: Satohiro Masuda is an academic researcher from Kyushu University. The author has contributed to research in topics: Tacrolimus & Liver transplantation. The author has an hindex of 52, co-authored 188 publications receiving 10055 citations. Previous affiliations of Satohiro Masuda include University of Tokushima & Kyoto University.


Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that hOOAT1, hOAT3, and hOCT2 play predominant roles in the transport of organic ions across the basolateral membrane of human proximal tubules.
Abstract: Renal excretion of organic anions and cations is mediated by the organic ion transporter family (SLC22A). In this study, the mRNA levels of the organic ion transporters were quantified by real-time PCR in normal parts of renal tissues from seven nephrectomized patients with renal cell carcinoma, and the distributions and localization of human (h)OAT1, hOAT3, and hOCT2 proteins were investigated by immunohistochemical analyses in the human kidney. The expression level of hOAT3 mRNA was the highest among the organic ion transporter family, followed by that of hOAT1 mRNA. The hOCT2 mRNA level was the highest in the human OCT family, and the level of hOCTN2 mRNA was higher than that of hOCTN1. hOCT1 mRNA showed the lowest level of expression in organic ion transporter family. hOAT1, hOAT3, and hOCT2 proteins were detected in crude membranes from the kidney of all patients by Western blot analyses, whereas hOCT1 protein could not be detected. Immunohistochemical analyses showed that both hOAT1 and hOAT3 were localized to the basolateral membrane of the proximal tubules in the cortex, and hOCT2 was localized to the basolateral membrane of the proximal tubules in both the cortex and medullary ray. Immunohistochemical analyses of serial sections indicated that hOAT1, hOAT3, and hOCT2 were coexpressed in a portion of the proximal tubules. These results suggest that hOAT1, hOAT3, and hOCT2 play predominant roles in the transport of organic ions across the basolateral membrane of human proximal tubules.

500 citations

Journal ArticleDOI
Satohiro Masuda1, M Okano1, K Yamagishi1, Masaya Nagao1, Masamichi Ueda1, Ryuzo Sasaki1 
TL;DR: The results provide a novel site of Epo production and suggest that Epo acts on neurons in a paracrine fashion, and the regulation of EpO production by oxygen operates at the level of its mRNA.

479 citations

Journal ArticleDOI
TL;DR: Detailed information concerning molecular and cellular aspects of drug transporters expressed in the kidney has facilitated studies of the mechanisms underlying renal disposition as well as transporter-mediated drug interactions.

430 citations

Journal ArticleDOI
TL;DR: HMATE1 and hMATE2-K function together as a detoxication system, by mediating the tubular secretion of intracellular ionic compounds across the brush-border membranes of the kidney.

373 citations

Journal ArticleDOI
TL;DR: Results indicate that hMATE2-K is a new human kidney-specific H+/organic cation antiporter that is responsible for the tubular secretion of cationic drugs across the brush border membranes.
Abstract: A cDNA coding a new H + /organic cation antiporter, human kidney-specific multidrug and toxin extrusion 2 (hMATE2-K), has been isolated from the human kidney. The hMATE2-K cDNA had an open reading frame that encodes a 566–amino acid protein, which shows 94, 82, 52, and 52% identity with the hMATE2, hMATE2-B, hMATE1, and rat MATE1, respectively. Reverse transcriptase–PCR revealed that hMATE2-K mRNA but not hMATE2 was expressed predominantly in the kidney, and hMATE2-B was ubiquitously found in all tissues examined except the kidney. The immunohistochemical analyses revealed that the hMATE2-K as well as the hMATE1 was localized at the brush border membranes of the proximal tubules. HEK293 cells that were transiently transfected with the hMATE2-K cDNA but not hMATE2-B exhibited the H + gradient–dependent antiport of tetraethylammonium (TEA). Transfection of hMATE2-B had no affect on the hMATE2-K–mediated transport of TEA. hMATE2-K also transported cimetidine, 1-methyl-4-phenylpyridinium (MPP), procainamide, metformin, and N 1 -methylnicotinamide. Kinetic analyses demonstrated that the Michaelis-Menten constants for the hMATE2-K–mediated transport of TEA, MPP, cimetidine, metformin, and procainamide were 0.83 mM, 93.5 μM, 0.37 mM, 1.05 mM, and 4.10 mM, respectively. Ammonium chloride–induced intracellular acidification significantly stimulated the hMATE2-K–dependent transport of organic cations such as TEA, MPP, procainamide, metformin, N 1 -methylnicotinamide, creatinine, guanidine, quinidine, quinine, thiamine, and verapamil. These results indicate that hMATE2-K is a new human kidney–specific H + /organic cation antiporter that is responsible for the tubular secretion of cationic drugs across the brush border membranes.

349 citations


Cited by
More filters
01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions, as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
Abstract: Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.

2,879 citations

Journal ArticleDOI
26 Jan 2007-Science
TL;DR: It is hypothesized that the presence of a rare codon, marked by the synonymous polymorphism, affects the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites.
Abstract: Synonymous single-nucleotide polymorphisms (SNPs) do not produce altered coding sequences, and therefore they are not expected to change the function of the protein in which they occur. We report that a synonymous SNP in the Multidrug Resistance 1 (MDR1) gene, part of a haplotype previously linked to altered function of the MDR1 gene product P-glycoprotein (P-gp), nonetheless results in P-gp with altered drug and inhibitor interactions. Similar mRNA and protein levels, but altered conformations, were found for wild-type and polymorphic P-gp. We hypothesize that the presence of a rare codon, marked by the synonymous polymorphism, affects the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites.

2,480 citations

Journal ArticleDOI
TL;DR: Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.

1,482 citations

Journal ArticleDOI
TL;DR: Emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.
Abstract: Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.

1,449 citations