scispace - formally typeset
Search or ask a question
Author

Satoko Sugiyama

Bio: Satoko Sugiyama is an academic researcher from University of Shizuoka. The author has contributed to research in topics: Diterpene & Andrographis paniculata. The author has an hindex of 3, co-authored 3 publications receiving 336 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The methanol extract of the aerial part of Andrographis paniculata Nees showed potent cell differentiation-inducing activity on mouse myeloid leukemia (M1) cells and four new diterpene dimers were isolated along with six known compounds.
Abstract: The methanol extract of the aerial part of Andrographis paniculata Nees showed potent cell differentiation-inducing activity on mouse myeloid leukemia (M1) cells. From the ethyl acetate-soluble fraction of the methanol extract, six new diterpenoids of ent-labdane type, 14-epi-andrographolide (3), isoandrographolide (4), 14-deoxy-12-methoxyandrographolide (7), 12-epi-14-deoxy-12-methoxyandrographolide (8), 14-deoxy-12-hydroxyandrographolide (9) and 14-deoxy-11-hydroxyandrographolide (10) as well as two new diterpene glucosides, 14-deoxy-11,12-didehydroandrographi-side (12) and 6'-acetylneoandrographolide (14), and four new diterpene dimers, bis-andrograpolides A (15), B (16), C (17) and D (18), were isolated along with six known compounds. The structures of the diterpenoids were determined by means of spectral methods. Some of these compounds showed potent cell differentiation-inducing activity towards M1 cells.

274 citations

Journal ArticleDOI
TL;DR: An attempt was made to isolate differentiation inducers from Aurantii Nobilis Pericarpium and the fruit peel of Citrus reticulata Blanco and they showed the differentiation inducing activity toward mouse myeloid leukemia cells, and the cells came to have phagocytic activity.
Abstract: An attempt was made to isolate differentiation inducers from Aurantii Nobilis Pericarpium and the fruit peel of Citrus reticulata Blanco (Rutaceae). Twenty-seven kinds of flavones, including five new flavones, were isolated after repeated chromatography from methanol extracts of these plants and their structures were established, from their physicochemical data, to be highly methoxylated flavones. Each compound, except for two flavone glucosides, showed the differentiation inducing activity toward mouse myeloid leukemia cells (M1), and the cells came to have phagocytic activity. Furthermore, differentiation inducing activity was tested using human acute promyelocytic leukemia cell line (HL-60).

69 citations

Journal ArticleDOI
TL;DR: The methanol extract of the aerial part of Andrographis paniculata Nees showed potent cell differentiation-inducing activity on mouse myeloid leukemia (M1) cells as discussed by the authors.
Abstract: The methanol extract of the aerial part of Andrographis paniculata Nees showed potent cell differentiation-inducing activity on mouse myeloid leukemia (M1) cells. From the ethyl acetate-soluble fraction of the methanol extract, six new diterpenoids of ent-labdane type, 14-epi-andrographolide (3), isoandrographolide (4), 14-deoxy-12-methoxyandrographolide (7), 12-epi-14-deoxy-12-methoxyandrographolide (8), 14-deoxy-12-hydroxyandrographolide (9) and 14-deoxy-11-hydroxyandrographolide (10) as well as two new diterpene glucosides, 14-deoxy-11,12-didehydroandrographi-side (12) and 6'-acetylneoandrographolide (14), and four new diterpene dimers, bis-andrograpolides A (15), B (16), C (17) and D (18), were isolated along with six known compounds. The structures of the diterpenoids were determined by means of spectral methods. Some of these compounds showed potent cell differentiation-inducing activity towards M1 cells.

8 citations


Cited by
More filters
Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations

Book
05 Dec 1995
TL;DR: Phenolics in Food and Nutraceuticals as mentioned in this paper is the first single-source compendium of essential information concerning food phenolics, which reports the classification and nomenclature of phenolics and their occurrence in food and nutraceuticals.
Abstract: Phenolics in Food and Nutraceuticals is the first single-source compendium of essential information concerning food phenolics. This unique book reports the classification and nomenclature of phenolics, their occurrence in food and nutraceuticals, chemistry and applications, and nutritional and health effects. In addition, it describes antioxidant activity of phenolics in food and nutraceuticals as well as methods for analysis and quantification. Each chapter concludes with an extensive bibliography for further reading. Food scientists, nutritionists, chemists, biochemists, and health professionals will find this book valuable.

1,252 citations

Journal ArticleDOI
TL;DR: The relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citron flavonoid and their role in degenerative diseases are discussed.
Abstract: Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transfo...

961 citations

Journal ArticleDOI
TL;DR: The results indicate that the dichloromethane fraction of the methanolic extract of Andrographis paniculata retains the active compounds contributing for both the anticancer and immunostimulatory activity.

441 citations

Journal ArticleDOI
TL;DR: This review will focus on the various plant-derived chemical compounds that have, in recent years, shown promise as anticancer agents and will outline their potential mechanism of action.
Abstract: Cancer is the second leading cause of death worldwide. Although great advancements have been made in the treatment and control of cancer progression, significant deficiencies and room for improvement remain. A number of undesired side effects sometimes occur during chemotherapy. Natural therapies, such as the use of plant-derived products in cancer treatment, may reduce adverse side effects. Currently, a few plant products are being used to treat cancer. However, a myriad of many plant products exist that have shown very promising anti-cancer properties in vitro, but have yet to be evaluated in humans. Further study is required to determine the efficacy of these plant products in treating cancers in humans. This review will focus on the various plant-derived chemical compounds that have, in recent years, shown promise as anticancer agents and will outline their potential mechanism of action.

389 citations