scispace - formally typeset
Search or ask a question
Author

Satoshi Kitayama

Bio: Satoshi Kitayama is an academic researcher from Kanazawa University. The author has contributed to research in topics: Blank & Deep drawing. The author has an hindex of 17, co-authored 99 publications receiving 1074 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a Sequential Approximate Optimization (SAO) procedure that uses the Radial Basis Function (RBF) network and proposes a sampling strategy that can be found with a small number of function evaluations.
Abstract: This paper presents a Sequential Approximate Optimization (SAO) procedure that uses the Radial Basis Function (RBF) network. If the objective and constraints are not known explicitly but can be evaluated through a computationally intensive numerical simulation, the response surface, which is often called meta-modeling, is an attractive method for finding an approximate global minimum with a small number of function evaluations. An RBF network is used to construct the response surface. The Gaussian function is employed as the basis function in this paper. In order to obtain the response surface with good approximation, the width of this Gaussian function should be adjusted. Therefore, we first examine the width. Through this examination, some sufficient conditions are introduced. Then, a simple method to determine the width of the Gaussian function is proposed. In addition, a new technique called the adaptive scaling technique is also proposed. The sufficient conditions for the width are satisfied by introducing this scaling technique. Second, the SAO algorithm is developed. The optimum of the response surface is taken as a new sampling point for local approximation. In addition, it is necessary to add new sampling points in the sparse region for global approximation. Thus, an important issue for SAO is to determine the sparse region among the sampling points. To achieve this, a new function called the density function is constructed using the RBF network. The global minimum of the density function is taken as the new sampling point. Through the sampling strategy proposed in this paper, the approximate global minimum can be found with a small number of function evaluations. Through numerical examples, the validities of the width and sampling strategy are examined in this paper.

156 citations

Journal ArticleDOI
TL;DR: In this article, the cooling performance of conformal cooling channel in plastic injection molding (PIM) is numerically and experimentally examined, and it is found from the numerical result that the cooling quality of the conformal channel is much improved compared to the conventional cooling channel.
Abstract: In this paper, cooling performance of conformal cooling channel in plastic injection molding (PIM) is numerically and experimentally examined. To examine the cooling performance, cycle time and warpage are considered. Melt temperature, injection time, packing pressure, packing time, cooling time, and cooling temperature are taken as the design variables. A multi-objective optimization of the process parameters is then performed. First, the process parameters of conformal cooling channel are optimized. Numerical simulation in the PIM is so intensive that a sequential approximate optimization using a radial basis function network is used to identify a pareto-frontier. It is found from the numerical result that the cooling performance of conformal cooling channel is much improved, compared to the conventional cooling channel. Based on the numerical result, the conformal cooling channel is developed by using additive manufacturing technology. The experiment is then carried out to examine the validity of the conformal cooling channel. Through numerical and experimental result, it is confirmed that the conformal cooling channel is effective to the short cycle time and the warpage reduction.

105 citations

Journal ArticleDOI
TL;DR: Through typical mathematical and structural optimization problems, the validity of the proposed approach for the MDNLP is examined and a useful method to determine the penalty parameter of penalty term for the discrete design variables is proposed.
Abstract: In this paper, the basic characteristics of particle swarm optimization (PSO) for the global search are discussed at first, and then the PSO for the mixed discrete nonlinear problems (MDNLP) is suggested. The penalty function approach to handle the discrete design variables is employed, in which the discrete design variables are handled as the continuous ones by penalizing at the intervals. As a result, a useful method to determine the penalty parameter of penalty term for the discrete design variables is proposed. Through typical mathematical and structural optimization problems, the validity of the proposed approach for the MDNLP is examined.

73 citations

Journal ArticleDOI
TL;DR: A new sampling strategy using sequential approximate multi-objective optimization (SAMOO) in radial basis function (RBF) network is proposed and the detailed procedure to construct the pareto-fitness function with the RBF network is described.
Abstract: In industrial design optimization, objectives and constraints are generally given as implicit form of the design variables, and are evaluated through computationally intensive numerical simulation. Under this situation, response surface methodology is one of helpful approaches to design optimization. One of these approaches, known as sequential approximate optimization (SAO), has gained its popularity in recent years. In SAO, the sampling strategy for obtaining a highly accurate global minimum remains a critical issue. In this paper, we propose a new sampling strategy using sequential approximate multi-objective optimization (SAMOO) in radial basis function (RBF) network. To identify a part of the pareto-optimal solutions with a small number of function evaluations, our proposed sampling strategy consists of three phases: (1) a pareto-optimal solution of the response surfaces is taken as a new sampling point; (2) new points are added in and around the unexplored region; and (3) other parts of the pareto-optimal solutions are identified using a new function called the pareto-fitness function. The optimal solution of this pareto-fitness function is then taken as a new sampling point. The upshot of this approach is that phases (2) and (3) add sampling points without solving the multi-objective optimization problem. The detailed procedure to construct the pareto-fitness function with the RBF network is described. Through numerical examples, the validity of the proposed sampling strategy is discussed.

63 citations

Journal ArticleDOI
TL;DR: The radial basis function (RBF) network is adopted for the SAO, and the pareto-frontier is identified with a small number of simulation runs, and Numerical result shows that the pneumatic surface approach is valid.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research on DE.
Abstract: Differential Evolution (DE) is arguably one of the most powerful and versatile evolutionary optimizers for the continuous parameter spaces in recent times. Almost 5 years have passed since the first comprehensive survey article was published on DE by Das and Suganthan in 2011. Several developments have been reported on various aspects of the algorithm in these 5 years and the research on and with DE have now reached an impressive state. Considering the huge progress of research with DE and its applications in diverse domains of science and technology, we find that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research. The purpose of this paper is to summarize and organize the information on these current developments on DE. Beginning with a comprehensive foundation of the basic DE family of algorithms, we proceed through the recent proposals on parameter adaptation of DE, DE-based single-objective global optimizers, DE adopted for various optimization scenarios including constrained, large-scale, multi-objective, multi-modal and dynamic optimization, hybridization of DE with other optimizers, and also the multi-faceted literature on applications of DE. The paper also presents a dozen of interesting open problems and future research issues on DE.

1,265 citations

Journal ArticleDOI
TL;DR: The proposed interior search algorithm (ISA) is inspired by interior design and decoration and it only has one parameter to tune and can outperform the other well-known algorithms.
Abstract: This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune.

358 citations

Journal ArticleDOI
TL;DR: This study introduces chaos into the APSO in order to further enhance its global search ability, and shows that the CAPSO with an appropriate chaotic map can clearly outperform standard APSO, with very good performance in comparison with other algorithms and in application to a complex problem.

336 citations

Journal ArticleDOI
TL;DR: This article categorizes, reviews, and analyzes the state-of-the-art single−/multi-response adaptive sampling approaches for global metamodeling in support of simulation-based engineering design and discusses some important issues that affect the success of an adaptive sampling approach.
Abstract: Metamodeling is becoming a rather popular means to approximate the expensive simulations in today’s complex engineering design problems since accurate metamodels can bring in a lot of benefits. The metamodel accuracy, however, heavily depends on the locations of the observed points. Adaptive sampling, as its name suggests, places more points in regions of interest by learning the information from previous data and metamodels. Consequently, compared to traditional space-filling sampling approaches, adaptive sampling has great potential to build more accurate metamodels with fewer points (simulations), thereby gaining increasing attention and interest by both practitioners and academicians in various fields. Noticing that there is a lack of reviews on adaptive sampling for global metamodeling in the literature, which is needed, this article categorizes, reviews, and analyzes the state-of-the-art single−/multi-response adaptive sampling approaches for global metamodeling in support of simulation-based engineering design. In addition, we also review and discuss some important issues that affect the success of an adaptive sampling approach as well as providing brief remarks on adaptive sampling for other purposes. Last, challenges and future research directions are provided and discussed.

276 citations

Journal ArticleDOI
TL;DR: Particle swarm optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms as discussed by the authors.
Abstract: Particle Swarm Optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms. The canonical particle swarm optimizer is based on the flocking behavior and social co-operation of birds and fish schools and draws heavily from the evolutionary behavior of these organisms. This paper serves to provide a thorough survey of the PSO algorithm with special emphasis on the development, deployment and improvements of its most basic as well as some of the state-of-the-art implementations. Concepts and directions on choosing the inertia weight, constriction factor, cognition and social weights and perspectives on convergence, parallelization, elitism, niching and discrete optimization as well as neighborhood topologies are outlined. Hybridization attempts with other evolutionary and swarm paradigms in selected applications are covered and an up-to-date review is put forward for the interested reader.

260 citations