scispace - formally typeset
Author

Satyajit Sahu

Bio: Satyajit Sahu is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topic(s): Thermoelectric effect & Seebeck coefficient. The author has an hindex of 14, co-authored 65 publication(s) receiving 905 citation(s). Previous affiliations of Satyajit Sahu include Indian National Association & Indian Association for the Cultivation of Science.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, a single brain-neuron-extracted microtubule is shown to be a memory-switching element, whose hysteresis loss is nearly zero.
Abstract: We demonstrate that a single brain-neuron-extracted microtubule is a memory-switching element, whose hysteresis loss is nearly zero. Our study shows how a memory-state forms in the nanowire and how its protein arrangement symmetry is related to the conducting-state written in the device, thus, enabling it to store and process ∼500 distinct bits, with 2 pA resolution between 1 nA and 1 pA. Its random access memory is an analogue of flash memory switch used in a computer chip. Using scanning tunneling microscope imaging, we demonstrate how single proteins behave inside the nanowire when this 3.5 billion years old nanowire processes memory-bits.

127 citations

Journal ArticleDOI

[...]

TL;DR: A monomolecular water channel residing inside the protein-cylinder displays an unprecedented control in governing the tantalizing electronic and optical properties of microtubule.
Abstract: Microtubule nanotubes are found in every living eukaryotic cells; these are formed by reversible polymerization of the tubulin protein, and their hollow fibers are filled with uniquely arranged water molecules. Here we measure single tubulin molecule and single brain-neuron extracted microtubule nanowire with and without water channel inside to unravel their unique electronic and optical properties for the first time. We demonstrate that the energy levels of a single tubulin protein and single microtubule made of 40,000 tubulin dimers are identical unlike conventional materials. Moreover, the transmitted ac power and the transient fluorescence decay (single photon count) are independent of the microtubule length. Even more remarkable is the fact that the microtubule nanowire is more conducting than a single protein molecule that constitutes the nanowire. Microtubule's vibrational peaks condense to a single mode that controls the emergence of size independent electronic/optical properties, and automated noise alleviation, which disappear when the atomic water core is released from the inner cylinder. We have carried out several tricky state-of-the-art experiments and identified the electromagnetic resonance peaks of single microtubule reliably. The resonant vibrations established that the condensation of energy levels and periodic oscillation of unique energy fringes on the microtubule surface, emerge as the atomic water core resonantly integrates all proteins around it such that the nanotube irrespective of its size functions like a single protein molecule. Thus, a monomolecular water channel residing inside the protein-cylinder displays an unprecedented control in governing the tantalizing electronic and optical properties of microtubule.

126 citations

Journal ArticleDOI

[...]

TL;DR: This work fabricated a unique memristive device by molecular engineering and demonstrated that the leakage current tuning in the device is 100 times more efficient than that in a standard device.
Abstract: We have fabricated a unique memristive device by molecular engineering and demonstrated that the leakage current tuning in the device is 100 times more efficient than that in a standard device. Molecular analogs of the memristive matrices used here are an electrochemically active conjugated Co(III) polymer (CP) and a nonconjugated Co(III) polymer (NCP), which have been synthesized in good yield and characterized by 1H NMR spectroscopy. Redox switching of an organic−metallic hybrid polymer generates bistable states with a large ON/OFF ratio that supports random flip-flops for several hours. Thus, we provide a synthetic solution to leakage current restriction, one of the fundamental problems faced when fabricating state-of-the-art electronic devices.

103 citations

Journal ArticleDOI

[...]

TL;DR: An assembly of molecular switches that simultaneously interact to perform a variety of computational tasks including conventional digital logic, calculating Voronoi diagrams, and simulating natural phenomena such as heat diffusion and cancer growth are demonstrated.
Abstract: Modern computers operate at enormous speeds—capable of executing in excess of 1013 instructions per second—but their sequential approach to processing, by which logical operations are performed one after another, has remained unchanged since the 1950s. In contrast, although individual neurons of the human brain fire at around just 103 times per second, the simultaneous collective action of millions of neurons enables them to complete certain tasks more efficiently than even the fastest supercomputer. Here we demonstrate an assembly of molecular switches that simultaneously interact to perform a variety of computational tasks including conventional digital logic, calculating Voronoi diagrams, and simulating natural phenomena such as heat diffusion and cancer growth. As well as representing a conceptual shift from serial-processing with static architectures, our parallel, dynamically reconfigurable approach could provide a means to solve otherwise intractable computational problems. The processors of most computers work in series, performing one instruction at a time. This limits their ability to perform certain types of tasks in a reasonable period. An approach based on arrays of simultaneously interacting molecular switches could enable previously intractable computational problems to be solved.

79 citations

Journal ArticleDOI

[...]

TL;DR: “common frequency point” is proposed as a tool to regulate protein complex related diseases in the future by building an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal.
Abstract: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule

73 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,416 citations

Journal Article

[...]

1,178 citations

Journal ArticleDOI

[...]

789 citations

Journal ArticleDOI

[...]

TL;DR: Organic photodiodes (OPDs) are beginning to rival their inorganic counterparts in a number of performance criteria including the linear dynamic range, detectivity, and color selectivity.
Abstract: Major growth in the image sensor market is largely as a result of the expansion of digital imaging into cameras, whether stand-alone or integrated within smart cellular phones or automotive vehicles. Applications in biomedicine, education, environmental monitoring, optical communications, pharmaceutics and machine vision are also driving the development of imaging technologies. Organic photodiodes (OPDs) are now being investigated for existing imaging technologies, as their properties make them interesting candidates for these applications. OPDs offer cheaper processing methods, devices that are light, flexible and compatible with large (or small) areas, and the ability to tune the photophysical and optoelectronic properties − both at a material and device level. Although the concept of OPDs has been around for some time, it is only relatively recently that significant progress has been made, with their performance now reaching the point that they are beginning to rival their inorganic counterparts in a number of performance criteria including the linear dynamic range, detectivity, and color selectivity. This review covers the progress made in the OPD field, describing their development as well as the challenges and opportunities.

398 citations

Posted Content

[...]

TL;DR: In this article, a novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized.
Abstract: A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry. Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

383 citations