scispace - formally typeset
Search or ask a question
Author

Saul A. Teukolsky

Bio: Saul A. Teukolsky is an academic researcher from Cornell University. The author has contributed to research in topics: Black hole & Binary black hole. The author has an hindex of 68, co-authored 222 publications receiving 118217 citations. Previous affiliations of Saul A. Teukolsky include California Institute of Technology.


Papers
More filters
01 Jan 1994
TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Abstract: Note: Includes bibliographical references, 3 appendixes and 2 indexes.- Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08

19,881 citations

Journal ArticleDOI

17,845 citations

Book
31 Jan 1986
TL;DR: Numerical Recipes: The Art of Scientific Computing as discussed by the authors is a complete text and reference book on scientific computing with over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, with many new topics presented at the same accessible level.
Abstract: From the Publisher: This is the revised and greatly expanded Second Edition of the hugely popular Numerical Recipes: The Art of Scientific Computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, this book is more than ever the most practical, comprehensive handbook of scientific computing available today. The book retains the informal, easy-to-read style that made the first edition so popular, with many new topics presented at the same accessible level. In addition, some sections of more advanced material have been introduced, set off in small type from the main body of the text. Numerical Recipes is an ideal textbook for scientists and engineers and an indispensable reference for anyone who works in scientific computing. Highlights of the new material include a new chapter on integral equations and inverse methods; multigrid methods for solving partial differential equations; improved random number routines; wavelet transforms; the statistical bootstrap method; a new chapter on "less-numerical" algorithms including compression coding and arbitrary precision arithmetic; band diagonal linear systems; linear algebra on sparse matrices; Cholesky and QR decomposition; calculation of numerical derivatives; Pade approximants, and rational Chebyshev approximation; new special functions; Monte Carlo integration in high-dimensional spaces; globally convergent methods for sets of nonlinear equations; an expanded chapter on fast Fourier methods; spectral analysis on unevenly sampled data; Savitzky-Golay smoothing filters; and two-dimensional Kolmogorov-Smirnoff tests. All this is in addition to material on such basic top

12,662 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Rainer Storn1, Kenneth Price
TL;DR: In this article, a new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented, which requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
Abstract: A new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented. By means of an extensive testbed it is demonstrated that the new method converges faster and with more certainty than many other acclaimed global optimization methods. The new method requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.

24,053 citations