scispace - formally typeset
Search or ask a question
Author

Saurabh Channan

Bio: Saurabh Channan is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Land cover & Satellite imagery. The author has an hindex of 15, co-authored 30 publications receiving 2051 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A global, 30-m resolution dataset of percent tree cover by rescaling the 250-m MOderate-resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) Tree Cover layer using circa- 2000 and 2005 Landsat images, incorporating the MODIS Cropland Layer to improve accuracy in agricultural areas.
Abstract: We developed a global, 30-m resolution dataset of percent tree cover by rescaling the 250-m MOderate-resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) Tree Cover layer using circa- 2000 and 2005 Landsat images, incorporating the MODIS Cropland Layer to improve accuracy in agricultural areas Resulting Landsat-based estimates maintained consistency with the MODIS VCF in both epochs (RMSE =86% in 2000 and 119% in 2005), but showed improved accuracy in agricultural areas and increased discrimination of small forest patches Against lidar measurements, the Landsat-based estimates exhibited accuracy slightly less than that of the MODIS VCF (RMSE=168% for MODIS-based vs 174% for Landsat-based estimates), but RMSE of Landsat estimates was 33 percentage points lower than that of the MODIS data in an agricultural region The Landsat data retained the saturation artifact of the MODIS VCF at greater than or equal to 80% tree cover but showed greater potential for removal

582 citations

Journal ArticleDOI
TL;DR: The methods to create global products of forest cover and cover change at Landsat resolutions are described and the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, and the use of information extraction procedures robust to errors in training data are evaluated.
Abstract: The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

271 citations

Journal ArticleDOI
TL;DR: A global, 30-m-resolution inland surface water dataset with an automated algorithm using Landsat-based surface reflectance estimates, multispectral water and vegetation indices, terrain metrics, and prior coarse-resolution water masks is produced.
Abstract: The science and management of terrestrial ecosystems require accurate, high-resolution mapping of surface water. We produced a global, 30-m-resolution inland surface water dataset with an automated algorithm using Landsat-based surface reflectance estimates, multispectral water and vegetation indices, terrain metrics, and prior coarse-resolution water masks. The dataset identified 3,650,723 km2 of inland water globally – nearly three quarters of which was located in North America (40.65%) and Asia (32.77%), followed by Europe (9.64%), Africa (8.47%), South America (6.91%), and Oceania (1.57%). Boreal forests contained the largest portion of terrestrial surface water (25.03% of the global total), followed by the nominal ‘inland water’ biome (16.36%), tundra (15.67%), and temperate broadleaf and mixed forests (13.91%). Agreement with respect to the Moderate-resolution Imaging Spectroradiometer water mask and Landsat-based national land-cover datasets was very high, with commission errors <4% and omission er...

251 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed an empirical method for retrieving annual, long-term continuous fields of impervious surface cover from the Landsat archive and applied it to the Washington, D.C.-Baltimore, MD megalopolis from 1984 to 2010.

229 citations

Journal ArticleDOI
TL;DR: In this article, a post-classification methodology was proposed to characterize the change in impervious surface cover (ISC) as a continuous field in space and time, and applied to a series of ISC maps of the Washington DC-Baltimore metropolitan region.

198 citations


Cited by
More filters
Journal ArticleDOI
15 Nov 2013-Science
TL;DR: Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally, and boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms.
Abstract: Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

7,890 citations

Journal ArticleDOI
15 Dec 2016-Nature
TL;DR: Using three million Landsat satellite images, this globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities.
Abstract: A freely available dataset produced from three million Landsat satellite images reveals substantial changes in the distribution of global surface water over the past 32 years and their causes, from climate change to human actions. The distribution of surface water has been mapped globally, and local-to-regional studies have tracked changes over time. But to date, there has been no global and methodologically consistent quantification of changes in surface water over time. Jean-Francois Pekel and colleagues have analysed more than three million Landsat images to quantify month-to-month changes in surface water at a resolution of 30 metres and over a 32-year period. They find that surface waters have declined by almost 90,000 square kilometres—largely in the Middle East and Central Asia—but that surface waters equivalent to about twice that area have been created elsewhere. Drought, reservoir creation and water extraction appear to have driven most of the changes in surface water over the past decades. The location and persistence of surface water (inland and coastal) is both affected by climate and human activity1 and affects climate2,3, biological diversity4 and human wellbeing5,6. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions7, statistical extrapolation of regional data8 and satellite imagery9,10,11,12, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images13, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change14 is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal15,16. Losses in Australia17 and the USA18 linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.

2,469 citations

Journal ArticleDOI
30 May 2014-Science
TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Abstract: Background A principal function of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is to “perform regular and timely assessments of knowledge on biodiversity.” In December 2013, its second plenary session approved a program to begin a global assessment in 2015. The Convention on Biological Diversity (CBD) and five other biodiversity-related conventions have adopted IPBES as their science-policy interface, so these assessments will be important in evaluating progress toward the CBD’s Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. As a contribution toward such assessment, we review the biodiversity of eukaryote species and their extinction rates, distributions, and protection. We document what we know, how it likely differs from what we do not, and how these differences affect biodiversity statistics. Interestingly, several targets explicitly mention “known species”—a strong, if implicit, statement of incomplete knowledge. We start by asking how many species are known and how many remain undescribed. We then consider by how much human actions inflate extinction rates. Much depends on where species are, because different biomes contain different numbers of species of different susceptibilities. Biomes also suffer different levels of damage and have unequal levels of protection. How extinction rates will change depends on how and where threats expand and whether greater protection counters them. Different visualizations of species biodiversity. ( A ) The distributions of 9927 bird species. ( B ) The 4964 species with smaller than the median geographical range size. ( C ) The 1308 species assessed as threatened with a high risk of extinction by BirdLife International for the Red List of Threatened Species of the International Union for Conservation of Nature. ( D ) The 1080 threatened species with less than the median range size. (D) provides a strong geographical focus on where local conservation actions can have the greatest global impact. Additional biodiversity maps are available at www.biodiversitymapping.org. Advances Recent studies have clarified where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. These data are increasingly accessible, bringing greater transparency to science and governance. Taxonomic catalogs of plants, terrestrial vertebrates, freshwater fish, and some marine taxa are sufficient to assess their status and the limitations of our knowledge. Most species are undescribed, however. The species we know best have large geographical ranges and are often common within them. Most known species have small ranges, however, and such species are typically newer discoveries. The numbers of known species with very small ranges are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. We expect unknown species to share these characteristics. Current rates of extinction are about 1000 times the background rate of extinction. These are higher than previously estimated and likely still underestimated. Future rates will depend on many factors and are poised to increase. Finally, although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Outlook Progress on assessing biodiversity will emerge from continued expansion of the many recently created online databases, combining them with new global data sources on changing land and ocean use and with increasingly crowdsourced data on species’ distributions. Examples of practical conservation that follow from using combined data in Colombia and Brazil can be found at www.savingspecies.org and www.youtube.com/watch?v=R3zjeJW2NVk.

2,360 citations

Journal ArticleDOI
TL;DR: An analysis of global forest cover is conducted to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation, indicating an urgent need for conservation and restoration measures to improve landscape connectivity.
Abstract: We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 year sd emonstrates that habitatfragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

2,201 citations

01 Jan 2015
TL;DR: In this article, the authors conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation.
Abstract: Urgent need for conservation and restoration measures to improve landscape connectivity. We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

2,083 citations