scispace - formally typeset
Search or ask a question
Author

Saurabh Gangola

Bio: Saurabh Gangola is an academic researcher from Graphic Era Hill University. The author has contributed to research in topics: Bioremediation & Cypermethrin. The author has an hindex of 12, co-authored 47 publications receiving 528 citations. Previous affiliations of Saurabh Gangola include G. B. Pant University of Agriculture and Technology & Indian Council of Agricultural Research.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions.

137 citations

Journal ArticleDOI
TL;DR: Cypermethrin biodegradation ability of Bacillus subtilis strain 1D without producing any toxic end product reveals the potential of this organism in cleaning of pesticide contaminated soil and water.
Abstract: Ubiquitous presence of cypermethrin as a contaminant in surface stream and soil necessitates to develop potential bioremediation methods to degrade and eliminate this pollutant from the environment. A cypermethrin utilizing bacterial strain (MIC, 450 ppm) was isolated from the soil of pesticide contaminated agriculture field and characterized by using polyphasic approach. On molecular basis bacterial isolate showed 98% homology with Bacillus subtilis strain 1D. Under optimized growth conditions, bacteria showed 95% degradation of cypermethrin after 15 days and the end products of cypermethrin biodegradation under aerobic conditions were cyclododecylamine, phenol, 3-(2,2-dichloroethenyl 2,2-dimethyl cyclopropane carboxylate,1-decanol,chloroacetic acid, acetic acid, cyclopentan palmitoleic acid, and decanoic acid. Amplification of esterase (700 bp) and laccase (1200 bp) genes was confirmed by PCR which showed a possible role of these enzymes in biodegradation of cypermethrin. In the presence of cypermethrin Km value(s) of both the enzymes was low than the control. A nobel cypermethrin degradation pathway followed by B. subtilis was proposed on the basis of characterization of biodegraded products of cypermethrin using GC-MS. Cypermethrin biodegradation ability of Bacillus subtilis strain 1D without producing any toxic end product reveals the potential of this organism in cleaning of pesticide contaminated soil and water.

117 citations

Journal ArticleDOI
04 Feb 2016
TL;DR: A novel biodegradation pathway of cypermethrin with Bacillus sp.
Abstract: Pesticides belonging to pyrethroid group are widely used in agricultural fields to check pest infestation in different crops for enhanced food production. In spite of beneficial effects, non-judicious use of pesticides imposes harmful effect on human health as their residues reach different food materials and ground water via leaching, percolation and bioaccumulation. Looking into the potential of microbial degradation of toxic compounds under natural environment, a cypermethrin-degrading Bacillus sp. was isolated from pesticide-contaminated soil of a rice field of Distt. Udham Singh Nagar, Uttarakhand, India. The bacteria degraded the compound up to 81.6 % within 15 days under standard growth conditions (temperature 32 °C pH 7 and shaking at 116 rpm) in minimal medium. Analysis of intermediate compounds of biodegraded cypermethrin revealed that the bacteria opted a new pathway for cypermethrin degradation. GC-MS analysis of biodegraded cypermethrin showed the presence of 4-propylbenzoate, 4-propylbenzaldehyde, phenol M-tert-butyl and 1-dodecanol, etc. which was not reported earlier in cypermethrin metabolism; hence a novel biodegradation pathway of cypermethrin with Bacillus sp. strain SG2 is proposed in this study.

96 citations

Journal ArticleDOI
TL;DR: In this article, quantitative gene expression data were collected during bacterial growth and an increased mRNA level is usually linked with higher rate of metabolism related to biodegradation of an unusual compound.
Abstract: During bacterial growth an increased mRNA level is usually linked with higher rate of metabolism related to biodegradation of an unusual compound. In this study, quantitative gene expression data d...

60 citations

Journal ArticleDOI
12 May 2017
TL;DR: Investigation of the effect of nanochitosan in combination with plant growth promoting rhizobacteria (PGPR), PS2 and PS10 on maize growth revealed enhanced plant health parameters like seed germination, plant height, and leaf area, and increase in organic acids indicates increased stress tolerance mechanism operating in maize plant after treatment.
Abstract: The present study evaluated the effect of nanochitosan in combination with plant growth promoting rhizobacteria (PGPR), PS2 and PS10 on maize growth. The PGPR were earlier recognized as Bacillus spp. on the basis of 16S rDNA sequencing. The observation revealed enhanced plant health parameters like seed germination (from 60 to 96.97%), plant height (1.5-fold increase), and leaf area (twofold). Variability in different physicochemical parameters (pH, oxidizable organic carbon, available phosphorous, available potassium, ammoniacal nitrogen and nitrate nitrogen) was observed. Activities of soil health indicator enzymes (dehydrogenase, fluorescein diacetate hydrolysis and alkaline phosphatase) were also enhanced 2 to 3 fold. Plant metabolites with respect to different treatments were also analyzed using gas chromatography–mass spectroscopy (GC–MS) and the result revealed an increase in the amounts of alcohols, acid ester and aldehyde compounds. Increase in organic acids indicates increased stress tolerance mechanism operating in maize plant after treatment of nanochitosan.

58 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

01 Jan 2014
TL;DR: In this paper, a review on modern strategies used for the management of water, pesticides, limitations in the use of chemical pesticides and potential of nano-materials in sustainable agriculture management as modern approaches of nanotechnology is presented.
Abstract: Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. The current global population is nearly 7 */billion with 50% living in Asia. A large proportion of those living in developing countries face daily food shortages as a result of environmental impacts or political instability, while in the developed world there is surplus of food. For developing countries, the drive is to develop drought and pest resistant crops, which also maximize yield. The potential of nanotechnology to revolutionise the health care, textile, materials, information and communication technology, and energy sectors has been well publicized. The application of nanotechnology to agriculture and food industries is also getting attention nowadays. Investments in agriculture and food nanotechnologies carry increasing weight because their potential benefits range from improved food quality and safety to reduced agricultural inputs and improved processing and nutrition. While most investment is made primarily in developed countries, research advancements provide glimpses of potential applications in agricultural, food, and water safety that could have significant impacts on rural populations in developing countries. This review is concentrated on modern strategies used for the management of water, pesticides, limitations in the use of chemical pesticides and potential of nano-materials in sustainable agriculture management as modern approaches of nanotechnology. Key words: Agriculture, nanotechnology, nanofertilizer, nanoencapsulation, nanoherbicides.

389 citations

Journal ArticleDOI
TL;DR: This review discussed classification, mechanisms, benefits and adverse effects of the pesticides on both human beings and the environment, and some remedial measures to mitigate their toxicity.

373 citations

Journal ArticleDOI
TL;DR: The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed and Lactobacillus animalis was a new taxonomic unit recommended to have the QPS status.
Abstract: Qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA was updated with 54 biological agents, received between April and September 2019; 23 already had QPS status, 14 were excluded from the QPS exercise (7 filamentous fungi, 6 Escherichia coli, Sphingomonas paucimobilis which was already evaluated). Seventeen, corresponding to 16 TUs, were evaluated for possible QPS status, fourteen of these for the first time, and Protaminobacter rubrum, evaluated previously, was excluded because it is not a valid species. Eight TUs are recommended for QPS status. Lactobacillus parafarraginis and Zygosaccharomyces rouxii are recommended to be included in the QPS list. Parageobacillus thermoglucosidasius and Paenibacillus illinoisensis can be recommended for the QPS list with the qualification 'for production purposes only' and absence of toxigenic potential. Bacillus velezensis can be recommended for the QPS list with the qualification 'absence of toxigenic potential and the absence of aminoglycoside production ability'. Cupriavidus necator, Aurantiochytrium limacinum and Tetraselmis chuii can be recommended for the QPS list with the qualification 'production purposes only'. Pantoea ananatis is not recommended for the QPS list due to lack of body of knowledge in relation to its pathogenicity potential for plants. Corynebacterium stationis, Hamamotoa singularis, Rhodococcus aetherivorans and Rhodococcus ruber cannot be recommended for the QPS list due to lack of body of knowledge. Kodamaea ohmeri cannot be recommended for the QPS list due to safety concerns.

347 citations

01 Jan 2005
TL;DR: The recent availability of extensive metagenomic sequences from various environmental microbial communities has extended the postgenomic era to the field of environmental microbiology as mentioned in this paper, however, the application of proteomic investigations to complex microbial assemblages such as seawater and soil still presents considerable challenges.
Abstract: The recent availability of extensive metagenomic sequences from various environmental microbial communities has extended the postgenomic era to the field of environmental microbiology. Although still restricted to a small number of studies, metaproteomic investigations have revealed interesting aspects of functional gene expression within microbial habitats that contain limited microbial diversity. These studies highlight the potential of proteomics for the study of microbial consortia. However, the application of proteomic investigations to complex microbial assemblages such as seawater and soil still presents considerable challenges. Nonetheless, metaproteomics will enhance the understanding of the microbial world and link microbial community composition to function.

293 citations