scispace - formally typeset
Search or ask a question
Author

Saurav Samanta

Other affiliations: Narasinha Dutt College
Bio: Saurav Samanta is an academic researcher from S.N. Bose National Centre for Basic Sciences. The author has contributed to research in topics: Noncommutative geometry & Gauge symmetry. The author has an hindex of 13, co-authored 28 publications receiving 927 citations. Previous affiliations of Saurav Samanta include Narasinha Dutt College.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a general derivation, for any static spherically symmetric metric, of the relation connecting the black hole temperature with the surface gravity following the tunneling interpretation of Hawking radiation is given.
Abstract: We give a general derivation, for any static spherically symmetric metric, of the relation ${T}_{h}=\frac{\mathcal{K}}{2\ensuremath{\pi}}$ connecting the black hole temperature (${T}_{h}$) with the surface gravity ($\mathcal{K}$), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.

272 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss some of the applications of non-commutative geometry in physics that are of recent interest, such as non-computative many-body systems, non-Commutative extension of Special Theory of Relativity kinematics, twisted gauge theories and non-convex gravity.
Abstract: In this review article we discuss some of the applications of noncommutative geometry in physics that are of recent interest, such as noncommutative many-body systems, noncommutative extension of Special Theory of Relativity kinematics, twisted gauge theories and noncommutative gravity.

117 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that a correction beyond the semi-classical approximation makes a black hole thermodynamically stable, and that this stability is reached through a phase transition.
Abstract: Black hole thermodynamics, confined to the semi-classical regime, cannot address the thermodynamic stability of a black hole in flat space. Here we show that inclusion of a correction beyond the semi-classical approximation makes a black hole thermodynamically stable. This stability is reached through a phase transition. By using Ehrenfest’s scheme we further prove that this is a glassy phase transition with a Prigogine–Defay ratio close to 3. This value is well within the desired bound (2 to 5) for a glassy phase transition. Thus our analysis indicates a very close connection between the phase transition phenomena of a black hole and glass forming systems. Finally, we discuss the robustness of our results by considering different normalisations for the correction term.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of gravity is formulated on a Lie algebraic noncommutative space-time and the Seiberg-Witten map technique is exploited to formulate the theory.
Abstract: We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.

75 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the tunneling of photon across the event horizon of a static spherically symmetric black hole and derived the semiclassical Hawking temperature and Bekenstein-Hawking area law.

70 citations


Cited by
More filters
01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations

Book ChapterDOI
01 Jun 1993
TL;DR: In this paper, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

1,009 citations

Journal ArticleDOI
TL;DR: This work reviews the current status of phenomenological programs inspired by quantum-spacetime research and stresses the significance of results establishing that certain data analyses provide sensitivity to effects introduced genuinely at the Planck scale.
Abstract: I review the current status of phenomenological programs inspired by quantum-spacetime research. I stress in particular the significance of results establishing that certain data analyses provide sensitivity to effects introduced genuinely at the Planck scale. My main focus is on phenomenological programs that affect the directions taken by studies of quantum-spacetime theories.

642 citations

Journal ArticleDOI
03 Jun 1932-Science

581 citations