scispace - formally typeset
Search or ask a question
Author

Sawada M

Bio: Sawada M is an academic researcher. The author has contributed to research in topics: Chromosome aberration & In vivo. The author has an hindex of 4, co-authored 5 publications receiving 664 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Salmonella/microsome tests (Ames tests) and chromosomal aberration tests in vitro using a Chinese hamster fibroblast cell line were carried out on 190 synthetic food additives and 52 food additives derived from natural sources, all of which are currently used in Japan.

634 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin‐layer chromatography and this should open the way technically for more detailed information to be obtained on body burdens of paraben and in particular whether body burdens are different in cancer from those in normal tissues.
Abstract: Parabens are used as preservatives in many thousands of cosmetic, food and pharmaceutical products to which the human population is exposed. Although recent reports of the oestrogenic properties of parabens have challenged current concepts of their toxicity in these consumer products, the question remains as to whether any of the parabens can accumulate intact in the body from the long-term, low-dose levels to which humans are exposed. Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin-layer chromatography. More detailed studies enabled identification and measurement of mean concentrations of individual parabens in samples of 20 human breast tumours by high-pressure liquid chromatography followed by tandem mass spectrometry. The mean concentration of parabens in these 20 human breast tumours was found to be 20.6 +/- 4.2 ng x g(-1) tissue. Comparison of individual parabens showed that methylparaben was present at the highest level (with a mean value of 12.8 +/- 2.2 ng x g(-1) tissue) and represents 62% of the total paraben recovered in the extractions. These studies demonstrate that parabens can be found intact in the human breast and this should open the way technically for more detailed information to be obtained on body burdens of parabens and in particular whether body burdens are different in cancer from those in normal tissues.

714 citations

Journal ArticleDOI
TL;DR: It was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen, and a relative predictivity (RP) measure is a useful tool to assess the carcinogenic risk from a positive genotoxicity signal.
Abstract: The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.

711 citations

Journal ArticleDOI
TL;DR: In this article, the carcinogenic activity of butylated hydroxyanisole (BHA) in rats and hamsters was studied, and the effects of 12 phenolic compounds structurally related to BHA on the hamster forestomach, including propyl gallate and ethoxyquin, were examined.

518 citations

Journal ArticleDOI
TL;DR: Overall assessment of the cancer risk of aldehydes in the diet leads to the conclusion that formaldehyde, acrolein, citral and vanillin are no dietary risk factors, and that the opposite may be true for acetaldehyde, crotonaldehyde and furfural.
Abstract: Aldehydes constitute a group of relatively reactive organic compounds. They occur as natural (flavoring) constituents in a wide variety of foods and food components, often in relatively small, but occasionally in very large concentrations, and are also widely used as food additives. Evidence of carcinogenic potential in experimental animals is convincing for formaldehyde and acetaldehyde, limited for crotonaldehyde, furfural and glycidaldehyde, doubtful for malondialdehyde, very weak for acrolein and absent for vanillin. Formaldehyde carcinogenesis is a high-dose phenomenon in which the cytotoxicity plays a crucial role. Cytotoxicity may also be of major importance in acetaldehyde carcinogenesis but further studies are needed to prove or disprove this assumption. For a large number of aldehydes (relevant) data on neither carcinogenicity nor genotoxicity are available. From epidemiological studies there is no convincing evidence of aldehyde exposure being related to cancer in humans. Overall assessment of the cancer risk of aldehydes in the diet leads to the conclusion that formaldehyde, acrolein, citral and vanillin are no dietary risk factors, and that the opposite may be true for acetaldehyde, crotonaldehyde and furfural. Malondialdehyde, glycidaldehyde, benzaldehyde, cinnamaldehyde and anisaldehyde cannot be evaluated on the basis of the available data. A series of aldehydes should be subjected to at least mutagenicity, cytogenicity and cytotoxicity tests. Priority setting for testing should be based on expected mechanism of action and degree of human exposure.

480 citations