Author

# Scott A. Vanstone

Bio: Scott A. Vanstone is an academic researcher from University of Waterloo. The author has contributed to research in topics: Elliptic curve point multiplication & Elliptic curve cryptography. The author has an hindex of 17, co-authored 23 publications receiving 21520 citations.

##### Papers

More filters

•

01 Jan 1996TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.

Abstract: From the Publisher:
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

•

01 Jan 2004

TL;DR: This guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment, as well as side-channel attacks and countermeasures.

Abstract: After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic* Distills complex mathematics and algorithms for easy understanding* Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software toolsThis comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.

2,893 citations

••

TL;DR: The ANSI X9.62 ECDSA is described and related security, implementation, and interoperability issues are discussed, and the strength-per-key-bit is substantially greater in an algorithm that uses elliptic curves.

Abstract: The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard and in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard and is under consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer factorization problem, no subexponential-time algorithm is known for the elliptic curve discrete logarithm problem. For this reason, the strength-per-key-bit is substantially greater in an algorithm that uses elliptic curves. This paper describes the ANSI X9.62 ECDSA, and discusses related security, implementation, and interoperability issues.

2,092 citations

••

TL;DR: The main result of the paper is to demonstrate the reduction of the elliptic curve logarithm problem to the logarathm problem in the multiplicative group of an extension of the underlying finite field, thus providing a probabilistic subexponential time algorithm for the former problem.

Abstract: Elliptic curve cryptosystems have the potential to provide relatively small block size, high-security public key schemes that can be efficiently implemented. As with other known public key schemes, such as RSA and discrete exponentiation in a finite field, some care must be exercised when selecting the parameters involved, in this case the elliptic curve and the underlying field. Specific classes of curves that give little or no advantage over previously known schemes are discussed. The main result of the paper is to demonstrate the reduction of the elliptic curve logarithm problem to the logarithm problem in the multiplicative group of an extension of the underlying finite field. For the class of supersingular elliptic curves, the reduction takes probabilistic polynomial time, thus providing a probabilistic subexponential time algorithm for the former problem. >

1,049 citations

••

03 Jan 1991TL;DR: The main result of the paper is to demonstrate the reduction of the elliptic curve logarithm problem to the logariths problem in the multiplicative group of an extension of the underlying finite field, thus providing a probabilistic subexponential time algorithm for the former problem.

Abstract: Abstruct- Elliptic cuwe cryptosystems have the potential to provide relatively small block size, high-security public key schemes that can be efficiently implemented. As with other known public key schemes, such as RSA and discrete exponentiation in a finite field, some care must be exercised when selecting the parameters involved, in this case the elliptic curve and the underlying field. Specific classes of cuwes that give little or no advantage over previously known schemes are discussed. The main result of the paper is to demonstrate the reduction of the elliptic curve logarithm problem to the logarithm problem in the multiplicative group of an extension of the underlying finite field. For the class of supersingular elliptic curves, the reduction takes probabilistic polynomial time, thus providing a probabilistic subexponential time algorithm for the former problem. Index Tem- Discrete logarithms, elliptic curves, public key CryPtOSraPhY.

824 citations

##### Cited by

More filters

•

01 Jan 1996TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.

Abstract: From the Publisher:
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

••

19 Aug 2001TL;DR: This work proposes a fully functional identity-based encryption scheme (IBE) based on the Weil pairing that has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem.

Abstract: We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem. Our system is based on the Weil pairing. We give precise definitions for secure identity based encryption schemes and give several applications for such systems.

7,083 citations

••

02 May 1999

TL;DR: A new trapdoor mechanism is proposed and three encryption schemes are derived : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA, which are provably secure under appropriate assumptions in the standard model.

Abstract: This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to public-key cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular arithmetics, are provably secure under appropriate assumptions in the standard model.

7,008 citations

••

15 Aug 1999TL;DR: In this paper, the authors examine specific methods for analyzing power consumption measurements to find secret keys from tamper resistant devices. And they also discuss approaches for building cryptosystems that can operate securely in existing hardware that leaks information.

Abstract: Cryptosystem designers frequently assume that secrets will be manipulated in closed, reliable computing environments. Unfortunately, actual computers and microchips leak information about the operations they process. This paper examines specific methods for analyzing power consumption measurements to find secret keys from tamper resistant devices. We also discuss approaches for building cryptosystems that can operate securely in existing hardware that leaks information.

6,757 citations

••

TL;DR: The question of primitive points on an elliptic curve modulo p is discussed, and a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global point is given.

Abstract: We discuss analogs based on elliptic curves over finite fields of public key cryptosystems which use the multiplicative group of a finite field. These elliptic curve cryptosystems may be more secure, because the analog of the discrete logarithm problem on elliptic curves is likely to be harder than the classical discrete logarithm problem, especially over GF(2'). We discuss the question of primitive points on an elliptic curve modulo p, and give a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global point.

5,378 citations