scispace - formally typeset
Search or ask a question
Author

Scott D. Woodruff

Bio: Scott D. Woodruff is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Oak Ridge National Laboratory & CLIWOC. The author has an hindex of 15, co-authored 25 publications receiving 5584 citations. Previous affiliations of Scott D. Woodruff include Cooperative Institute for Research in Environmental Sciences & Earth System Research Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: The Twentieth Century Reanalysis (20CR) dataset as discussed by the authors provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions.
Abstract: The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century. Copyright © 2011 Royal Meteorological Society and Crown Copyright.

3,043 citations

Journal ArticleDOI
TL;DR: The Comprehensive Ocean-Atmosphere Data Set (COADS) as mentioned in this paper is the result of a cooperative project to collect global weather observations taken near the ocean surface since 1854, primarily from merchant ships, into a compact and easily used data set.
Abstract: Development is described of a Comprehensive Ocean-Atmosphere Data Set (COADS)—the result of a cooperative project to collect global weather observations taken near the ocean's surface since 1854, primarily from merchant ships, into a compact and easily used data set. As background, a historical overview is given of how archiving of these marine data has evolved from 1854, when systematic recording of shipboard meteorological and oceanographic observations was first established as an international activity. Input data sets used for COADS are described, as well as the processing steps used to pack input data into compact binary formats and to apply quality controls for identification of suspect weather elements and duplicate marine reports. Seventy-million unique marine reports for 1854–1979 were output from initial processing. Further processing is described, which created statistical summaries for each month of each year of the period, using 2° latitude × 2° longitude boxes. Monthly summary products are a...

1,084 citations

Journal ArticleDOI
TL;DR: The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) as discussed by the authors is a major update (covering 1662-2007) of the world's most extensive surface marine meteorological data collection.
Abstract: Release 2.5 of the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is a major update (covering 1662–2007) of the world's most extensive surface marine meteorological data collection. Building on extensive national and international partnerships, many new and improved contributing datasets have been processed into a uniform format and combined with the previous Release 2.4. The new data range from early non-instrumental ship observations to measurements initiated in the twentieth century from buoys and other automated platform types. Improvements to existing data include replacing preliminary Global Telecommunication System (GTS) receipts with more reliable, delayed mode reports for post-1997 data, and in the processing and quality control (QC) of humidity observations. Over the entire period of record, spatial and temporal coverage has been enriched and data and metadata quality has been improved. Along with the observations, now updated monthly in near real time, Release 2.5 includes quality-controlled monthly summary products for 2° latitude × 2° longitude (since 1800) and 1° × 1° boxes (since 1960), together with multiple options for access to the data and products. The measured and estimated data in Release 2.5 are subject to many technical changes, multiple archive sources, and historical events throughout the more than three-century record. Some of these data characteristics are highlighted, including known unresolved errors and inhomogeneities, which may impact climate and other research applications. Anticipated future directions for ICOADS aim to continue adding scientific value to the observations, products, and metadata, as well as strengthen the cooperative enterprise through expanded linkages to international initiatives and organisations. Copyright © 2010 Royal Meteorological Society

439 citations

Journal ArticleDOI
TL;DR: The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) as discussed by the authors is the largest available set of in situ marine observations, which includes instrument measurements and visual estimates, and data from moored and drifting buoys.
Abstract: The International Comprehensive Ocean-Atmosphere Data Set (ICOADS), release 2.1 (1784-2002), is the largest available set of in situ marine observations. Observations from ships include instrument measurements and visual estimates, and data from moored and drifting buoys are exclusively instrumental. The ICOADS collection is constructed from many diverse data sources, and made inhomogeneous by the changes in observing systems and recording practices used throughout the period of record, which is over two centuries. Nevertheless, it is a key reference data set that documents the long-term environmental state, provides input to a variety of critical climate and other research applications, and serves as a basis for many associated products and analyses. The observational database is augmented with higher level ICOADS data products. The observed data are synthesized to products by computing statistical summaries, on a monthly basis, for samples within 2° latitude x 2° longitude and 1° x 1° boxes beginning in 1800 and 1960 respectively. For each resolution the summaries are computed using two different data mixtures and quality control criteria. This partially controls and contrasts the effects of changing observing systems and accounts for periods with greater climate variability. The ICOADS observations and products are freely distributed worldwide. The standard ICOADS release is supplemented in several ways; additional summaries are produced using experimental quality control, additional observations are made available in advance of their formal blending into a release, and metadata that define recent ships' physical characteristics and instruments are available.

387 citations

Journal ArticleDOI
TL;DR: The Comprehensive Ocean-Atmosphere Data Set (COADS) as discussed by the authors has been updated through a cooperative U.S. project since 1981, including vital international contributions, and it covers 142 years, 1854-1995.
Abstract: The Comprehensive Ocean-Atmosphere Data Set (COADS) has been updated through a cooperative U.S. project since 1981, including vital international contributions. Quality controlled marine surface observations from ships have been supplemented in more recent years to include moored environmental buoys, drifting buoys, and near-surface measurements from oceanographic profiles. The data set now covers 142 years, 1854–1995. Monthly statistics of pseudo-fluxes and basic marine variables are calculated for each year using observed data falling within 2° latitude × 2° longitude boxes (1°×1° summaries are also available for 1960-93). Enhancements in data and metadata planned by the year 2000 as part of COADS Release 2 (∼ 1820–1997) will concentrate on the basic observational records. In addition to new data sources, which will augment flux estimates through expanded coverage, planned enhancements include: a) usage of selected metadata from WMO Pub. No. 47 (ship instrumentation history) to improve the observational records back to about 1973; b) improvements in the reliability of the wind speed (“estimated/measured”) indicator; and c) bias adjustments of wind speed Beaufort estimates and anemometer measurements.

265 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
TL;DR: HadISST1 as mentioned in this paper replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871.
Abstract: [1] We present the Met Office Hadley Centre's sea ice and sea surface temperature (SST) data set, HadISST1, and the nighttime marine air temperature (NMAT) data set, HadMAT1. HadISST1 replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871. The companion HadMAT1 runs monthly from 1856 on a 5° latitude-longitude grid and incorporates new corrections for the effect on NMAT of increasing deck (and hence measurement) heights. HadISST1 and HadMAT1 temperatures are reconstructed using a two-stage reduced-space optimal interpolation procedure, followed by superposition of quality-improved gridded observations onto the reconstructions to restore local detail. The sea ice fields are made more homogeneous by compensating satellite microwave-based sea ice concentrations for the impact of surface melt effects on retrievals in the Arctic and for algorithm deficiencies in the Antarctic and by making the historical in situ concentrations consistent with the satellite data. SSTs near sea ice are estimated using statistical relationships between SST and sea ice concentration. HadISST1 compares well with other published analyses, capturing trends in global, hemispheric, and regional SST well, containing SST fields with more uniform variance through time and better month-to-month persistence than those in GISST. HadMAT1 is more consistent with SST and with collocated land surface air temperatures than previous NMAT data sets.

8,958 citations

Journal ArticleDOI
TL;DR: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses as mentioned in this paper.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,572 citations

Journal ArticleDOI
TL;DR: An overview of the MERRA-2 system and various performance metrics is provided, including the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of M...

4,524 citations