scispace - formally typeset
Search or ask a question
Author

Scott Daniels

Bio: Scott Daniels is an academic researcher from Applied Biosystems. The author has contributed to research in topics: Isobaric labeling & Gas chromatography. The author has an hindex of 3, co-authored 6 publications receiving 4397 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that inactivation of Upf1p and Xrn1p causes common as well as unique effects on protein expression, and the use of 4-fold multiplexing to enable relative protein measurements simultaneously with determination of absolute levels of a target protein using synthetic isobaric peptide standards.

4,411 citations

Journal ArticleDOI
TL;DR: Both GC-MS and iTRAQ-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.

149 citations

Patent
08 Sep 2009
TL;DR: In this paper, the authors provide methods for analyzing amine-containing compounds in one or more samples using isobaric labels and parent-daughter ion transition monitoring (PDITM).
Abstract: The present teachings provide methods for analyzing one or more amine-containing compounds in one or more samples using isobaric labels and parent-daughter ion transition monitoring (PDITM). In various embodiments, the methods comprise the steps of: (a) labeling one or more amine-containing compounds with different isobaric tags from a set of isobaric tags, each isobaric tag comprising a reporter ion portion; (b) combining at least a portion of each of the isobarically labeled amine-containing compounds to produce a combined sample; (c) subjecting at least a portion of the combined sample to PDITM; (d) measuring the ion signal of one or more of the transmitted reporter ions; and (e) determining the concentration of one or more of the isobarically labeled amine-containing compounds based at least on a comparison of the measured ion signal of the corresponding reporter ion to one or more measured ion signals of a standard compound.

16 citations

Patent
15 Dec 2010
TL;DR: In this paper, a plurality of mass differential tagging reagents are used to label amine functionality in amine-containing compounds, and the labeled analytes have distinct retention times on a reversed phase column, and distinct masses.
Abstract: A plurality of mass differential tagging reagents is used to label amine functionality in amine-containing compounds. The labeled analytes have distinct retention times on a reversed phase column, and distinct masses. Under high energy collision, reporter groups can be generated and the intensity or the peak area detected for each reporter group can be used for quantitation. One exemplary set of reagents includes a set of three different mass differential reagents comprising tagging weights of (140) atomic mass units, (144) atomic mass units, and (148) atomic mass units, respectively, with reporter groups of (113, 117, and 121) atomic mass units, respectively. A package including each of the mass differential reagents is also provided and can include separate respective containers, for example, one for each of the different reagents. The package can also include one or more standards each comprising a respective known concentration of a respective known amine-containing compound.

3 citations

Patent
09 Feb 2006
TL;DR: In this paper, the authors provide methods for analyzing amine-containing compounds in one or more samples using isobaric labels and parent-daughter ion transition monitoring (PDITM).
Abstract: The present teachings provide methods for analyzing one or more amine-containing compounds in one or more samples using isobaric labels and parent-daughter ion transition monitoring (PDITM). In various embodiments, the methods comprise the steps of: (a) labeling one or more amine-containing compounds with different isobaric tags from a set of isobaric tags, each isobaric tag comprising a reporter ion portion; (b) combining at least a portion of each of the isobarically labeled amine-containing compounds to produce a combined sample; (c) subjecting at least a portion of the combined sample to PDITM; (d) measuring the ion signal of one or more of the transmitted reporter ions; and (e) determining the concentration of one or more of the isobarically labeled amine-containing compounds based at least on a comparison of the measured ion signal of the corresponding reporter ion to one or more measured ion signals of a standard compound.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new intensity determination and normalization procedure called MaxLFQ is developed that is fully compatible with any peptide or protein separation prior to LC-MS analysis, which accurately detects the mixing ratio over the entire protein expression range, with greater precision for abundant proteins.

3,732 citations

Journal ArticleDOI
TL;DR: Current understanding of the major factors regulating protein expression is summarized to demonstrate a substantial role for regulatory processes occurring after mRNA is made in controlling steady-state protein abundances.
Abstract: Recent advances in next-generation DNA sequencing and proteomics provide an unprecedented ability to survey mRNA and protein abundances. Such proteome-wide surveys are illuminating the extent to which different aspects of gene expression help to regulate cellular protein abundances. Current data demonstrate a substantial role for regulatory processes occurring after mRNA is made - that is, post-transcriptional, translational and protein degradation regulation - in controlling steady-state protein abundances. Intriguing observations are also emerging in relation to cells following perturbation, single-cell studies and the apparent evolutionary conservation of protein and mRNA abundances. Here, we summarize current understanding of the major factors regulating protein expression.

3,308 citations

Journal ArticleDOI
TL;DR: An updated protocol covering the most important basic computational workflows for mass-spectrometry-based proteomics data analysis, including those designed for quantitative label-free proteomics, MS1-level labeling and isobaric labeling techniques is presented.
Abstract: MaxQuant is one of the most frequently used platforms for mass-spectrometry (MS)-based proteomics data analysis Since its first release in 2008, it has grown substantially in functionality and can be used in conjunction with more MS platforms Here we present an updated protocol covering the most important basic computational workflows, including those designed for quantitative label-free proteomics, MS1-level labeling and isobaric labeling techniques This protocol presents a complete description of the parameters used in MaxQuant, as well as of the configuration options of its integrated search engine, Andromeda This protocol update describes an adaptation of an existing protocol that substantially modifies the technique Important concepts of shotgun proteomics and their implementation in MaxQuant are briefly reviewed, including different quantification strategies and the control of false-discovery rates (FDRs), as well as the analysis of post-translational modifications (PTMs) The MaxQuant output tables, which contain information about quantification of proteins and PTMs, are explained in detail Furthermore, we provide a short version of the workflow that is applicable to data sets with simple and standard experimental designs The MaxQuant algorithms are efficiently parallelized on multiple processors and scale well from desktop computers to servers with many cores The software is written in C# and is freely available at http://wwwmaxquantorg

2,811 citations

Journal ArticleDOI
21 Apr 2016-Cell
TL;DR: It is concluded that transcript levels by themselves are not sufficient to predict protein levels in many scenarios and to thus explain genotype-phenotype relationships and that high-quality data quantifying different levels of gene expression are indispensable for the complete understanding of biological processes.

1,996 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: Recent advances in mass spectrometry instrumentation are reviewed in the context of current and emerging research strategies in protein science.
Abstract: Mass spectrometry is a central analytical technique for protein research and for the study of biomolecules in general. Driven by the need to identify, characterize, and quantify proteins at ever increasing sensitivity and in ever more complex samples, a wide range of new mass spectrometry-based analytical platforms and experimental strategies have emerged. Here we review recent advances in mass spectrometry instrumentation in the context of current and emerging research strategies in protein science.

1,992 citations