scispace - formally typeset
Search or ask a question
Author

Scott G. Davis

Bio: Scott G. Davis is an academic researcher from Georgetown University. The author has contributed to research in topics: Laminar flow & Ignition system. The author has an hindex of 17, co-authored 35 publications receiving 2284 citations. Previous affiliations of Scott G. Davis include Centre national de la recherche scientifique & University of Delaware.

Papers
More filters
Journal ArticleDOI
01 Jan 2005
TL;DR: In this paper, a H2-CO kinetic model was proposed to predict a wide variety of H2 and CO combustion data, from global combustion properties (shock-tube ignition delays, laminar flame speeds, and extinction strain rates) to detailed species profiles during H 2 and CO oxidation.
Abstract: We propose a H2–CO kinetic model which incorporates the recent thermodynamic, kinetic, and species transport updates relevant to high-temperature H2 and CO oxidation. Attention has been placed on obtaining a comprehensive and kinetically accurate model able to predict a wide variety of H2–CO combustion data. The model was subject to systematic optimization and validation tests against reliable H2–CO combustion data, from global combustion properties (shock-tube ignition delays, laminar flame speeds, and extinction strain rates) to detailed species profiles during H2 and CO oxidation in flow reactor and in laminar premixed flames.

626 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the laminar flame speeds of various C1 to C8 hydrocarbons, including alkanes, alkenes, alkynes, aromatics, and alcohols, using the counterflow twin flame configuration.
Abstract: Laminar flame speeds determined by using the counterflow twin flame configuration were compared for various C1 to C8 hydrocarbons, including alkanes, alkenes, alkynes, aromatics, and alcohols. The data were compared over an extensive range of equivalence ratios at room temperature and atmospheric pressure. The comparison shows that the laminar flame speeds of normal alkanes are close throughout the entire range of equivalence ratios studied, except for methane whose flame speeds are consistently lower. The more unsaturated the molecule the higher the flame speed for fuels having the same carbon number in the order of alkanes < alkenes < alkynes. Methyl substitution for hydrogen or branching reduces the flame speeds for both alkanes and alkenes. The flame speeds of large saturated cyclic species (cyclohexane and cyclopentane) are close to those of their normal alkane analogs.

371 citations

Journal ArticleDOI
01 Jan 2000
TL;DR: In this paper, a computer modeling study was undertaken to discover whether optimizing the rate parameters of a C3 combustion chemistry mechanism that was added to a previously optimized 205-reaction C3 mechanism would provide satisfactory accounting for C3 flame speed and ignition data.
Abstract: Detailed chemical reaction mechanisms describing hydrocarbon combustion chemistry are conceptually structured in a hierarchical manner with H2 and CO chemistry at the base, supplemented as needed by elementary reactions of larger chemical species. While this structure gives a logical organization to combustion chemistry, the degree to which this organization reflects actual reactive fluxes in flames is not known. Moreover, it has not been tested whether sets of rate parameters derived by optimizing fits to small-hydrocarbon combustion data are secure foundations upon which to optimize the rate parameters needed for modeling the combustion of larger hydrocarbons. In this work, a computer modeling study was undertaken to discover whether optimizing the rate parameters of a 258-reaction C3 combustion chemistry mechanism that was added to a previously optimized 205-reaction C3 mechanism would provide satisfactory accounting for C3 flame speed and ignition data. The optimization was done with 21 optimization targets, 9 of which were ignition delays and 12 of which were atmospheric pressure laminar flame speeds; 2 of the ignition delays and 2 of the flame speeds, all for methane fuel, had served as optimization targets for the C3 rate parameters. It was found in sensitivity studies that the coupling between the C3 and the C3 chemistry was much stronger than anticipated. No set of C3 rate parameters could account for the C3 combustion data as long as the previously optimized (against C3 optimization targets only) C3 rate parameters remained fixed. A reasonable match to the C3 targets could be obtained, without degrading the match between experiment and calculation for the C3 optimization targets, by reoptimizing six of the previously optimized and three additional C3 rate parameters.

320 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic model consisting of 469 reactions and 71 species was used to describe the high-temperature kinetics of propene, propyne, allene, and propane.

208 citations

Journal ArticleDOI
TL;DR: In this article, the pressure-dependent rate coefficients for several reactions relevant to propyne pyrolysis were determined with ab initio quantum mechanical calculations and Rice−Ramsperger−Kassel−Marcus (RRKM) analyses.
Abstract: The pressure-dependent rate coefficients for several reactions relevant to propyne pyrolysis were determined with ab initio quantum mechanical calculations and Rice−Ramsperger−Kassel−Marcus (RRKM) analyses. These reactions include the mutual isomerization of propyne and allene, the chemically activated reactions of propyne and allene with the H atom and of acetylene with methyl on the C3H5 potential energy surface. Propyne pyrolysis was experimentally studied in a flow reactor at 1210 K and 1 atm. A detailed reaction mechanism, employing the current RRKM rate coefficients, is shown to accurately predict the experimental acetylene and methane profiles determined in the flow reactor and literature shock-tube data of propyne and allene pyrolysis up to 1500 K.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Atomistic modeling with ReaxFF provides a useful method for determining the initial events of oxidation of hydrocarbons under extreme conditions and can enhance existing combustion models.
Abstract: To investigate the initial chemical events associated with high-temperature gas-phase oxidation of hydrocarbons, we have expanded the ReaxFF reactive force field training set to include additional transition states and chemical reactivity of systems relevant to these reactions and optimized the force field parameters against a quantum mechanics (QM)-based training set. To validate the ReaxFF potential obtained after parameter optimization, we performed a range of NVT−MD simulations on various hydrocarbon/O2 systems. From simulations on methane/O2, o-xylene/O2, propene/O2, and benzene/O2 mixtures, we found that ReaxFF obtains the correct reactivity trend (propene > o-xylene > methane > benzene), following the trend in the C−H bond strength in these hydrocarbons. We also tracked in detail the reactions during a complete oxidation of isolated methane, propene, and o-xylene to a CO/CO2/H2O mixture and found that the pathways predicted by ReaxFF are in agreement with chemical intuition and our QM results. We o...

1,815 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: In this article, a systematic approach for mechanism reduction was developed and demonstrated, which consists of the generation of skeletal mechanisms from detailed mechanism using directed relation graph with specified accuracy requirement, and the subsequent generation of reduced mechanisms from the skeletal mechanisms using computational singular perturbation based on the assumption of quasi-steady state species.
Abstract: A systematic approach for mechanism reduction was developed and demonstrated. The approach consists of the generation of skeletal mechanisms from detailed mechanism using directed relation graph with specified accuracy requirement, and the subsequent generation of reduced mechanisms from the skeletal mechanisms using computational singular perturbation based on the assumption of quasi-steady-state species. Both stages of generation are guided by the performance of PSR for high-temperature chemistry and auto-ignition delay for low- to moderately high-temperature chemistry. The demonstration was performed for a detailed ethylene oxidation mechanism consisting of 70 species and 463 elementary reactions, resulting in a specific skeletal mechanism consisting of 33 species and 205 elementary reactions, and a specific reduced mechanism consisting of 20 species and 16 global reactions. Calculations for laminar flame speeds and nonpremixed counterflow ignition using either the skeletal mechanism or the reduced mechanism show very close agreement with those obtained by using the detailed mechanism over wide parametric ranges of pressure, temperature, and equivalence ratio.

825 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed kinetic mechanism for the pyrolysis and combustion of a large variety of fuels at high temperature conditions is presented, and the authors identify aspects of the mechanism that require further revision.

817 citations

Journal ArticleDOI
TL;DR: In this paper, an updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566-575) is presented and tested against a wide range of combustion targets.
Abstract: An updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566–575) is presented and tested against a wide range of combustion targets. The primary motivations of the model revision are to incorporate recent improvements in rate constant treatment and resolve discrepancies between experimental data and predictions using recently published kinetic models in dilute, high-pressure flames. Attempts are made to identify major remaining sources of uncertainties, in both the reaction rate parameters and the assumptions of the kinetic model, affecting predictions of relevant combustion behavior. With regard to model parameters, present uncertainties in the temperature and pressure dependence of rate constants for HO2 formation and consumption reactions are demonstrated to substantially affect predictive capabilities at high-pressure, low-temperature conditions. With regard to model assumptions, calculations are performed to investigate several reactions/processes that have not received much attention previously. Results from ab initio calculations and modeling studies imply that inclusion of H + HO2 = H2O + O in the kinetic model might be warranted, though further studies are necessary to ascertain its role in combustion modeling. In addition, it appears that characterization of nonlinear bath-gas mixture rule behavior for H + O2(+ M) = HO2(+ M) in multicomponent bath gases might be necessary to predict high-pressure flame speeds within ∼15%. The updated model is tested against all of the previous validation targets considered by Li et al. as well as new targets from a number of recent studies. Special attention is devoted to establishing a context for evaluating model performance against experimental data by careful consideration of uncertainties in measurements, initial conditions, and physical model assumptions. For example, ignition delay times in shock tubes are shown to be sensitive to potential impurity effects, which have been suggested to accelerate early radical pool growth in shock tube speciation studies. In addition, speciation predictions in burner-stabilized flames are found to be more sensitive to uncertainties in experimental boundary conditions than to uncertainties in kinetics and transport. Predictions using the present model adequately reproduce previous validation targets and show substantially improved agreement against recent high-pressure flame speed and shock tube speciation measurements. Comparisons of predictions of several other kinetic models with the experimental data for nearly the entire validation set used here are also provided in the Supporting Information. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 444–474, 2012

708 citations

Journal ArticleDOI
TL;DR: In this paper, a new experimental profile of stable species concentrations is reported for formaldehyde oxidation in a variable pressure flow reactor at initial temperatures of 850-950 K and at constant pressures ranging from 1.5 to 6.0 atm.
Abstract: New experimental profiles of stable species concentrations are reported for formaldehyde oxidation in a variable pressure flow reactor at initial temperatures of 850–950 K and at constant pressures ranging from 1.5 to 6.0 atm. These data, along with other data published in the literature and a previous comprehensive chemical kinetic model for methanol oxidation, are used to hierarchically develop an updated mechanism for CO/H2O/H2/O2, CH2O, and CH3OH oxidation. Important modifications include recent revisions for the hydrogen–oxygen submechanism (Li et al., Int J Chem Kinet 2004, 36, 565), an updated submechanism for methanol reactions, and kinetic and thermochemical parameter modifications based upon recently published information. New rate constant correlations are recommended for CO + OH = CO2 + H (R23) and HCO + M = H + CO + M (R24), motivated by a new identification of the temperatures over which these rate constants most affect laminar flame speed predictions (Zhao et al., Int J Chem Kinet 2005, 37, 282). The new weighted least-squares fit of literature experimental data for (R23) yields k23 = 2.23 × 105T1.89exp(583/T) cm3/mol/s and reflects significantly lower rate constant values at low and intermediate temperatures in comparison to another recently recommended correlation and theoretical predictions. The weighted least-squares fit of literature results for (R24) yields k24 = 4.75 × 1011T0.66exp(−7485/T) cm3/mol/s, which predicts values within uncertainties of both prior and new (Friedrichs et al., Phys Chem Chem Phys 2002, 4, 5778; DeSain et al., Chem Phys Lett 2001, 347, 79) measurements. Use of either of the data correlations reported in Friedrichs et al. (2002) and DeSain et al. (2001) for this reaction significantly degrades laminar flame speed predictions for oxygenated fuels as well as for other hydrocarbons. The present C1/O2 mechanism compares favorably against a wide range of experimental conditions for laminar premixed flame speed, shock tube ignition delay, and flow reactor species time history data at each level of hierarchical development. Very good agreement of the model predictions with all of the experimental measurements is demonstrated. © 2007 Wiley Periodicals, Inc. 39: 109–136, 2007

707 citations