scispace - formally typeset
Search or ask a question
Author

Scott H. Watterson

Bio: Scott H. Watterson is an academic researcher from Bristol-Myers Squibb. The author has contributed to research in topics: Bruton's tyrosine kinase & IMP dehydrogenase. The author has an hindex of 20, co-authored 68 publications receiving 927 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The structure-activity relationships (SAR) leading to a novel series of highly potent and selective carbazole and tetrahydrocarbazole based, reversible inhibitors of BTK are detailed, resulting in enhanced potency and selectivity as well as a reduction in safety liabilities.
Abstract: Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a member of the Tec family of kinases. BTK plays an essential role in B cell receptor (BCR)-mediated signaling as well as Fcγ receptor signaling in monocytes and Fce receptor signaling in mast cells and basophils, all of which have been implicated in the pathophysiology of autoimmune disease. As a result, inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as lupus and rheumatoid arthritis. This article details the structure–activity relationships (SAR) leading to a novel series of highly potent and selective carbazole and tetrahydrocarbazole based, reversible inhibitors of BTK. Of particular interest is that two atropisomeric centers were rotationally locked to provide a single, stable atropisomer, resulting in enhanced potency and selectivity as well as a reduction in safety liabilities. With significantly enhanced potency and selectivity, excellent in vivo properties an...

94 citations

Journal ArticleDOI
TL;DR: The evolution of the strategy to identify a covalent, irreversible inhibitor of BTK that has the intrinsic potency, selectivity, and pharmacokinetic properties necessary to provide a rapid rate of inactivation systemically following a very low dose is outlined.
Abstract: Bruton’s tyrosine kinase (BTK), a non-receptor tyrosine kinase, is a member of the Tec family of kinases and is essential for B cell receptor (BCR) mediated signaling. BTK also plays a critical role in the downstream signaling pathways for the Fcγ receptor in monocytes, the Fce receptor in granulocytes, and the RANK receptor in osteoclasts. As a result, pharmacological inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as rheumatoid arthritis and lupus. This article will outline the evolution of our strategy to identify a covalent, irreversible inhibitor of BTK that has the intrinsic potency, selectivity, and pharmacokinetic properties necessary to provide a rapid rate of inactivation systemically following a very low dose. With excellent in vivo efficacy and a very desirable tolerability profile, 5a (branebrutinib, BMS-986195) has advanced into clinical studies.

67 citations

Journal ArticleDOI
TL;DR: This article will detail the discovery and SAR leading to a novel and potent acridone-based IMPDH inhibitor 4m and its efficacy and GI tolerability when administered orally in a rat adjuvant arthritis model.
Abstract: Inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo synthesis of guanosine nucleotides, catalyzes the irreversible nicotinamide-adenine dinucleotide dependent oxidation of inosine-5‘-monophosphate to xanthosine-5‘-monophosphate. Mycophenolate Mofetil (MMF), a prodrug of mycophenolic acid, has clinical utility for the treatment of transplant rejection based on its inhibition of IMPDH. The overall clinical benefit of MMF is limited by what is generally believed to be compound-based, dose-limiting gastrointestinal (GI) toxicity that is related to its specific pharmacokinetic characteristics. Thus, development of an IMPDH inhibitor with a novel structure and a different pharmacokinetic profile may reduce the likelihood of GI toxicity and allow for increased efficacy. This article will detail the discovery and SAR leading to a novel and potent acridone-based IMPDH inhibitor 4m and its efficacy and GI tolerability when administered orally in a rat adjuvant arthritis model.

52 citations

Journal ArticleDOI
TL;DR: A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared and the structure-activity relationships derived from in vitro studies are described.

50 citations

Journal ArticleDOI
24 Jul 2017-PLOS ONE
TL;DR: The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.
Abstract: Bruton’s tyrosine kinase (BTK) regulates critical signal transduction pathways involved in the pathobiology of rheumatoid arthritis (RA) and other autoimmune disorders. BMS-986142 is a potent and highly selective reversible small molecule inhibitor of BTK currently being investigated in clinical trials for the treatment of both RA and primary Sjogren’s syndrome. In the present report, we detail the in vitro and in vivo pharmacology of BMS-986142 and show this agent provides potent and selective inhibition of BTK (IC50 = 0.5 nM), blocks antigen receptor-dependent signaling and functional endpoints (cytokine production, co-stimulatory molecule expression, and proliferation) in human B cells (IC50 ≤ 5 nM), inhibits Fcγ receptor-dependent cytokine production from peripheral blood mononuclear cells, and blocks RANK-L-induced osteoclastogenesis. Through the benefits of impacting these important drivers of autoimmunity, BMS-986142 demonstrated robust efficacy in murine models of rheumatoid arthritis (RA), including collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA). In both models, robust efficacy was observed without continuous, complete inhibition of BTK. When a suboptimal dose of BMS-986142 was combined with other agents representing the current standard of care for RA (e.g., methotrexate, the TNFα antagonist etanercept, or the murine form of CTLA4-Ig) in the CIA model, improved efficacy compared to either agent alone was observed. The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although it seems to fulfill a distinctly tumor-promoting role in many types of cancer, NF-κB has a confounding role in certain tumors.
Abstract: Inflammation is a fundamental protective response that sometimes goes awry and becomes a major cofactor in the pathogenesis of many chronic human diseases, including cancer. Here we review the evolutionary relationship and opposing functions of the transcription factor NF-κB in inflammation and cancer. Although it seems to fulfill a distinctly tumor-promoting role in many types of cancer, NF-κB has a confounding role in certain tumors. Understanding the activity and function of NF-κB in the context of tumorigenesis is critical for its successful taming, an important challenge for modern cancer biology.

1,242 citations

Journal ArticleDOI
TL;DR: Concerted metalation-deprotonation (CMD) is now proposed to be the turnover limiting step and DFT calculations conducted on this system agree with a stepwise C-N bond reductive elimination/N-O bond oxidative addition mechanism to afford the desired heterocycle.
Abstract: Directing groups that can act as internal oxidants have recently been shown to be beneficial in metal-catalyzed heterocycle syntheses that undergo C−H functionalization. Pursuant to the rhodium(III)-catalyzed redox-neutral isoquinolone synthesis that we recently reported, we present in this article the development of a more reactive internal oxidant/directing group that can promote the formation of a wide variety of isoquinolones at room temperature while employing low catalyst loadings (0.5 mol %). In contrast to previously reported oxidative rhodium(III)-catalyzed heterocycle syntheses, the new conditions allow for the first time the use of terminal alkynes. Also, it is shown that the use of alkenes, including ethylene, instead of alkynes leads to the room temperature formation of 3,4-dihydroisoquinolones. Mechanistic investigations of this new system point to a change in the turnover limiting step of the catalytic cycle relative to the previously reported conditions. Concerted metalation−deprotonation ...

810 citations

Journal ArticleDOI
TL;DR: A brief review of selected examples from the primary medicinal chemistry literature during the last three years to demonstrate the versatility of spiro scaffolds.

640 citations

Journal ArticleDOI
TL;DR: The use of complexes 1 and its dicationic analogue [Cp*Rh(MeCN)(3)][SbF(6)](2) 2 have been employed in the formation of indoles via the oxidative annulation of acetanilides with internal alkynes, extending the reaction class to include the synthesis of pyrroles.
Abstract: Recently, the rhodium(III)-complex [Cp*RhCl(2)](2) 1 has provided exciting opportunities for the efficient synthesis of aromatic heterocycles based on a rhodium-catalyzed C-H bond functionalization event. In the present report, the use of complexes 1 and its dicationic analogue [Cp*Rh(MeCN)(3)][SbF(6)](2) 2 have been employed in the formation of indoles via the oxidative annulation of acetanilides with internal alkynes. The optimized reaction conditions allow for molecular oxygen to be used as the terminal oxidant in this process, and the reaction may be carried out under mild temperatures (60 °C). These conditions have resulted in an expanded compatibility of the reaction to include a range of new internal alkynes bearing synthetically useful functional groups in moderate to excellent yields. The applicability of the method is exemplified in an efficient synthesis of paullone 3, a tetracyclic indole derivative with established biological activity. A mechanistic investigation of the reaction, employing deuterium labeling experiments and kinetic analysis, has provided insight into issues of reactivity for both coupling partners as well as aided in the development of conditions for improved regioselectivity with respect to meta-substituted acetanilides. This reaction class has also been extended to include the synthesis of pyrroles. Catalyst 2 efficiently couples substituted enamides with internal alkynes at room temperature to form trisubstituted pyrroles in good to excellent yields. The high functional group compatibility of this reaction enables the elaboration of the pyrrole products into a variety of differentially substituted pyrroles.

584 citations